1908-11-18 (18 1-118121 PINE) NI. 121 1917-2018

पुस्तिका में पृष्ठों की संख्या : 32 Number of Pages in Booklet : 32

पुस्तिका में प्रश्नों की संख्या : 150 No. of Questions in Booklet : 150

Subject Code: 07 विषय/SUBJECT:

MATHEMATICS

समय : 2.30 घण्टे Time : 2.30 Hours (of c)

E.D. 4.7-19

प्रश्न-पत्र पुस्तिका संख्या / Question Paper Booklet No. 900873

STSP-91

PAPER - II

अधिकतम अंक : 300 Maximum Marks : 300

प्रश्न-पत्र पुस्तिका एवं उत्तर पत्रक के पेपर सील/पॉलिथीन बैग को खोलने पर परीक्षार्थी यह सुनिश्चित कर लें कि उसके प्रश्न-पत्र पुस्तिका पर वही प्रश्न-पत्र पुस्तिका संख्या अंकित है जो उत्तर पत्रक पर अंकित है । इसमें कोई भिन्नता हो तो वीक्षक से दूसरा प्रश्न-पत्र प्राप्त कर लें । ऐसा न करने पर जिम्मेदारी अभ्यर्थी की होगी ।

The candidate should ensure that Question Paper Booklet No. of the Question Paper Booklet and Answer Sheet must be same after opening the Paper Seal / Polythene bag. In case they are different, a candidate must obtain another Question Paper. Candidate himself shall be responsible for ensuring this.

परीक्षार्थियों के लिए निर्देश

- सभी प्रश्नों के उत्तर दीजिए
- 2. सभी प्रश्नों के अंक समान हैं।
- 3. प्रत्येक प्रश्न का केवल एक ही उत्तर दीजिए ।
- 4. एक से अधिक उत्तर देने की दशा मैं प्रश्न के उत्तर को गलत माना जाएगा ।
- 5. प्रत्येक प्रश्न के चार बैंकल्पिक उत्तर दिये गये हैं, जिन्हें क्रमश: 1, 2, 3, 4 ऑकित किया गया है । अभ्यर्थी को सही उत्तर निर्दिष्ट करते हुए उनमें से केवल एक गोले अथवा बबल को उत्तर पत्रक पर नीले बॉल प्वाइंट पेन से गहरा करना है ।
- 6. OMR उत्तर पत्रक इस परीक्षा पुस्तिका के अन्दर रखा है । जब आपको परीक्षा पुस्तिका खोलने की कहा जाए, तो उत्तर पत्र निकाल कर ध्यान से केवल नीले बॉल पॉइंट पेन से विवरण भरें ।
- 7. प्रत्येक गलत उत्तर के लिए प्रश्न अंक का 1/3 भाग काटा जायेगा । गलत उत्तर से तात्पर्य अशुद्ध उत्तर अथवा किसी भी प्रश्न के एक से अधिक उत्तर से हैं । किसी भी प्रश्न से संबंधित गोले या बबल को खाली छोड़ना गलत उत्तर नहीं माना जायेगा ।
- 8. मोबाइल फोन अथवा इलेक्ट्रोनिक यंत्र का परीक्षा हॉल में प्रयोग पूर्णतया वर्जित है । यदि किसी अभ्यर्थी के पास ऐसी कोई वर्जित सामग्री मिलती है तो उसके विरुद्ध आयोग द्वारा नियमानुसार कार्यवाही की जायेगी ।
- कृपया अपना रोल नम्बर ओ.एम.आर. पत्रक पर सावधानीपूर्वक सही भरें । गलत अथवा अपूर्ण रोल नम्बर भरने पर 5 अंक कुल प्राप्तांकों में से काटे जा सकते हैं ।
- 10. यदि किसी प्रश्न में किसी प्रकार की कोई मुद्रण या तथ्यात्मक प्रकार की त्रुटि हो तो प्रश्न के हिन्दी तथा अंग्रेज़ी रूपान्तरों में से अंग्रेज़ी रूपान्तर मान्य होगा ।

चेतावनी: अगर कोई अभ्यर्थी नकल करते पकड़ा जाता है या उसके पास से कोई अनिधकृत सामग्री पाई जाती है, तो उस अभ्यर्थी के विरुद्ध पुलिस में प्राथिमकी दर्ज कराते हुए विविध नियमों-प्रावधानों के तहत कार्यवाही की जाएगी। साथ ही विभाग ऐसे अभ्यर्थी को भविष्य में होने वाली विभाग की समस्त परीक्षाओं से विवर्जित कर सकता है।

INSTRUCTIONS FOR CANDIDATES

- Answer all questions.
- 2. All questions carry equal marks.
- 3. Only one answer is to be given for each question.
- 4. If more than one answers are marked, it would be treated as wrong answer.
- 5. Each question has four alternative responses marked serially as 1, 2, 3, 4. You have to darken only one circle or bubble indicating the correct answer on the Answer Sheet using BLUE BALL POINT PEN.
- 6. The OMR Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars carefully with blue ball point pen only.
- 7. 1/3 part of the mark(s) of each question will be deducted for each wrong answer. A wrong answer means an incorrect answer or more than one answers for any question. Leaving all the relevant circles or bubbles of any question blank will not be considered as wrong answer.
- Mobile Phone or any other electronic gadget in the examination hall is strictly prohibited. A candidate found with any of such objectionable material with him/her will be strictly dealt as per rules.
- Please correctly fill your Roll Number in O.M.R. Sheet.
 Marks can be deducted for filling wrong or incomplete Roll Number.
- 10. If there is any sort of ambiguity/mistake either of printing or factual nature then out of Hindi and English Version of the question, the English Version will be treated as standard.

Warning: If a candidate is found copying or if any unauthorized material is found in his/her possession, F.I.R. would be lodged against him/her in the Police Station and he/she would liable to be prosecuted. Department may also debar him/her permanently from all future examinations.

इस परीक्षा पुस्तिका को तब तक न खोलें जब तक कहा न जाए । Do not open this Test Booklet until you are asked to do so.

1.
$$\overline{A} = \begin{bmatrix} -1 & 0 & 2 \\ 5 & 6 & 7 \\ 0 & 3 & 0 \\ 4 & 0 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$ 1. If $A = \begin{bmatrix} -1 & 0 & 2 \\ 5 & 6 & 7 \\ 0 & 3 & 0 \\ 4 & 0 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$, $\overline{B} = \begin{bmatrix} 5 & 6 \\ -3 & 2$

एवं
$$C = \begin{bmatrix} 1 & 3 & 5 & 2 & -1 \\ 2 & 4 & -5 & -4 & -2 \end{bmatrix}$$
 एवं

- D = ABC, तब d_{34} बराबर है
- (1) 1
- (2) 38
- (3) 42
- (4) गुणन सम्भव नहीं है।
- सम्बन्ध R निम्न प्रकार परिभाषित है :

 $R = \{(a, b) \mid (a - b) = km, किसी निश्चित$ पूर्णांक m के लिए एवं a, b, $k \in \mathbb{Z}$ }, तब R है

- (1) स्वतुल्य परन्तु सममित नहीं
- (2) सममित परन्तु संक्रामक नहीं
- (3) संक्रामक परन्तु स्वतुल्य नहीं
- (4) एक तुल्यता सम्बन्ध है।

- इकाई के n, nवें मूल एक श्रेणी बनाते हैं, वह है
 - (1) समान्तर श्रेणी
 - (2) गुणोत्तर श्रेणी
 - (3) हरात्मक श्रेणी
 - (4) समान्तर-गुणोत्तर श्रेणी
- - (1) समित
 - (2) विषम सममित
 - (3) अव्युत्क्रमणीय
 - (4) व्युत्क्रमणीय

If
$$A = \begin{bmatrix} -1 & 0 & 2 \\ 5 & 6 & 7 \\ 0 & 3 & 0 \\ 4 & 0 & 4 \end{bmatrix}$$
, $B = \begin{bmatrix} 5 & 6 \\ -3 & 2 \\ -1 & 0 \end{bmatrix}$
 $C = \begin{bmatrix} 1 & 3 & 5 & 2 & -1 \\ 2 & 4 & -5 & -4 & -2 \end{bmatrix}$ and

D = ABC, then d_{34} equals

- (1) 1
- (2) 38
- (3) 42
- (4) multiplication is not possible
- Relation R is defined as 2.

 $R = \{(a, b) \mid (a - b) = km \text{ for some fixed } \}$ integer m and a, b, $k \in z$ }, then R is

- (1) Reflexive but not symmetric
- (2) Symmetric but not transitive
- (3) Transitive but not reflexive
- (4) An equivalence relation
- $\left(\frac{1+i}{\sqrt{2}}\right)^8 + \left(\frac{1-i}{\sqrt{2}}\right)^8$ equals:

- (4)
- n, nth roots of unity form a series in
 - (1) Arithmetic progression
 - (2) Geometric progression
 - (3) Harmonic Progression
 - (4) Arithmetic Geometric Progression

5. Matrix
$$\begin{bmatrix} 1 & -2 & -3 \\ 2 & 1 & -2 \\ 3 & 2 & 1 \end{bmatrix}$$
 is

- (1) symmetric
- (2) skew-symmetric
- (3) singular
- (4) non-singular

- धनात्मक पूर्णांक n के लिए $(-\sqrt{-1})^{4n+3}$ 6. बराबर है:
 - (1) 1
- (3) i
- (4) -i
- निम्न में सत्य कथन है: 7.
 - (1) $|z_1 + z_2|^2 < |z_1|^2 + |z_2|^2 + 2R(z_1 \overline{z}_2)$
 - (2) $|z_1 z_2|^2 > |z_1|^2 + |z_2|^2 2R(z_1 z_2)$
 - (3) $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$
 - (4) $|z_1| + |z_2| < |z_1 + z_2|$
- 30 × 60 से.मी. के आयताकार कागज को मोड़ 8. कर समषट्भुजाकार आधार वाले प्रिज़्म बनाए जाते हैं, इस प्रकार बने दी प्रिज़्मों के आयतनों का अनुपात है
 - (1) 1/2
- (3) $1/\sqrt{2}$
- (2) 2/3(4) $\sqrt{2}/\sqrt{3}$
- 30 से.मी. × 18 से.मी. के कागज को दो प्रकार 9. मोड़ कर लम्ब वृत्तीय बेलन का वक्रीय तल बनाया जा सकता है। तो इनके आयतनों का अनुपात है :
 - (1) 4/3 या 3/4 (2) 5/3 या 3/5
 - (3) 3/2 या 2/5
- (4) 1/2 या 2/1
- किसी घन का एक कोना A है, एवं A पर मिलने 10. वाली तीनों कोरों के मध्य बिन्द् P, Q, R हैं। अब चतुष्फलक APQR एवं घन के अन्य कोनों से ऐसे सभी चतुष्फलक काट कर हटाए जाते हैं, तो शेष ठोस के लिए सत्य कथन है :
 - (1) कोरों की संख्या = 36
 - (2) कोरों की संख्या = 24
 - (3) शीर्षों की संख्या = 24
 - (4) शीर्षों की संख्या = 36
- 11. $a = -5 + 2\sqrt{(-4)}$, $a = -5 + 2\sqrt{(-4)}$ $(x^4 + 9x^3 + 35x^2 - x + 4)$ बराबर है
 - (1) 160
- (2) 240
- (3) 160
- (4) 4
- 07 (Mathematics)

- For n being a positive integer, $(-\sqrt{-1})^{4n+3}$ equals:
 - (1) 1
- (2) -1
- (3) i
- (4) -i
- The true statement is 7.
 - (1) $|z_1 + z_2|^2 < |z_1|^2 + |z_2|^2 + 2R(z_1 \overline{z_2})$
 - (2) $|z_1 z_2|^2 > |z_1|^2 + |z_2|^2 2R(z_1 \overline{z}_2)$
 - (3) $|z_1 + z_2|^2 + |z_1 z_2|^2 = 2(|z_1|^2 + |z_2|^2)$
 - (4) $|z_1| + |z_2| < |z_1 + z_2|$
- A rectangular sheet of paper 30 × 60 cm 8. is folded so as to form prisms on regular hexagonal bases. The ratio of the volumes of the two prism is
 - (1) 1/2
- (3) $1/\sqrt{2}$
- A rectangular sheet of paper 30 cm long and 18 cm wide can be formed as the curved surface of a right circular cylinder in two ways. The ratio of their volumes is
 - (1) 4/3 or 3/4
- (2) 5/3 or 3/5
- (3) 3/2 or 2/5
- (4) 1/2 or 2/1
- A is the corner of any cube and P, Q, R 10. are the middle points of the edges which terminate at A. If APQR and the corresponding tetrahedra at the other corners are removed, then the true statement for the resulting solid is
 - (1) number of edges = 36
 - (2) number of edges = 24
 - (3) number of vertices = 24
 - (4) number of vertices = 36
- For $x = -5 + 2\sqrt{(-4)}$, then value of 11. $(x^4 + 9x^3 + 35x^2 - x + 4)$ equals
 - (1) 160
- (2) 240

- (3) 160
- (4) 4

- 12. एक 9 फूट ऊँचे शंकु आकार के टैंट को बनाने में कितने वर्ग गज कैनवैस (टैंट बनाने का विशेष कपड़ा) की आवश्यकता होगी, जिसमें एक 6 फूट 🚉 ऊँचा आदमी केन्द्र से 2 फूट दरी तक खड़ा हो सके?

 - (1) $2\sqrt{13}$ (2) $18 \pi \sqrt{13}$

 - (3) $4 \pi \sqrt{13}$ (4) $2 \pi \sqrt{13}$
- 13. 'p' इकाई लम्बाई वाली भूजा के एक समबाह त्रिभुज को उसकी एक भुजा के परितः घुमाया जाता है, तो इस प्रकार जनित ठोस का आयतन होगा: (इकाई घन में)
 - (1) $\frac{\pi p^3}{3}$ (2) $\frac{\pi p^3}{4}$ (3) $\frac{\pi p^3}{5}$ (4) $\frac{\pi p^3}{6}$
- 14. एक गोलें के केन्द्र से 7 से.मी. की द्री पर काटे गये वृत्ताकार काट का क्षेत्रफल 144 π वर्ग से.मी. है। तो उसी केन्द्र से 5 से.मी. की द्री पर काटे गये वृत्ताकार काट का क्षेत्रफल (वर्ग से.मी. में)
 - (1) 168
- (2) $\sqrt{168}$
- (3) $\sqrt{168} \pi$ (4) 168π
- 15. एक ही समान आधार पर एक शंकु, एक अर्धगोला एवं एक बेलन स्थित हैं, एवं उनकी ऊँचाइयाँ भी समान हैं, तो उनके आयतनों का अनुपात है :

 - (1) 1:2:3 (2) 2:3:4

 - (3) 3:4:5 (4) 4:5:6
- 10 से.मी. लम्बे एवं 8 से.मी. व्यास वाले ठोस वृत्तीय बेलन दोनों सिरों पर शंकु आकार का खोखला किया जाता है; इन शंकु आकार के खोखलों का व्यास 6 से.मी. एवं गहराई 4 से.मी. है, तो शेष ठोस का पूर्ण सतही क्षेत्रफल (वर्ग से.मी. में) होगा :
 - (1) 94π
- (2) 110π
- (3) 124π
- (4) 124

- How many square yards of canvas is 12. required for a conical tent 9 ft. high so that a man 6 ft. high could stand within a radius of 2 ft. from the centre? (in square yards)
 - (1) $2\sqrt{13}$
- (2) $18 \pi \sqrt{13}$
- (3) $4 \pi \sqrt{13}$ (4) $2 \pi \sqrt{13}$
- The volume of the solid generated by 13. the revolution of an equilateral triangle of side 'p' unit about one of its sides is: (in cube unit)
 - (1) $\frac{\pi p^3}{3}$
- (2) $\frac{\pi p^3}{4}$
- (3) $\frac{\pi p^3}{5}$
- The area of that circular section of a sphere which is at a distance of 7 cm from the centre is 144π sq. cm. Then the area that section which is at a distance of 5 cm from the centre (in sq. cm) is
 - (1) 168
- (2) $\sqrt{168}$
- (3) $\sqrt{168} \pi$
- (4) 168π
- A cone, a hemisphere and a cylinder 15. stand on equal bases and have the same height, then the ratio of their volumes is
 - (1) 1:2:3
- (2) 2:3:4
- (3) 3:4:5 (4) 4:5:6
- Into each end of a solid circular cylinder whose length is 10 cm and diameter is 8 cm, a conical cavity is bored; if the diameter of each cavity is 6 cm and its depth is 4 cm, then the whole surface of remaining solid (in sq. cm) is
 - (1) 94π
- (2) 110π
- (3) 124π
- (4) 124

- 5 से.मी. व्यास वाली तीन बराबर गेंदे परस्पर स्पर्श 17. करते हुए समतल फर्श पर रखी हैं, एवं समान त्रिज्या वाली चौथी गेंद उनके ऊपर रखी है। तो चौथी गेंद की केन्द्र में फर्श के ऊपर से.मी. में ऊँचाई है :

 - (1) $\left(\frac{50}{3} + \frac{5}{2}\right)^{1/2}$ (2) $5\left(\sqrt{\frac{2}{3}} + \frac{1}{3}\right)$

 - (3) $5\left(\sqrt{\frac{2}{3}}+1\right)$ (4) $5\left(\sqrt{\frac{2}{3}}+\frac{1}{2}\right)$
- एक रेडियन = λ (एक समकोण), तो λ बराबर 18. (रेडियन में) है
 - (1) π
- (2) $2/\pi$
- (3) $3/\pi$
- (4) $\pi/3$
- 19. \overline{a} $\theta = \frac{1}{\sqrt{7}}$, \overline{a} $\frac{\csc^2\theta \sec^2\theta}{\csc^2\theta + \sec^2\theta}$ बराबर है :
- (3) $\frac{3}{4}$
- एक 60 मी. ऊँची खड़ी चट्टान के शिखर से किसी 20. मीनार के शिखर एवं आधार के अवनयन कोण क्रमशः 30° एवं 60° हैं, तो मीनार की ऊँचाई है :
 - (1) 40 相.
- (2) $\frac{60}{\sqrt{3}}$ 相.
- (3) $60\sqrt{3}$ m
- 2 ईंच त्रिज्या का एक गोला, 3 ईंच त्रिज्या वाले 21. गोले के ऊपर रखा है। उस शंकु का आयतन ज्ञात करो जो इन दोनों गोलों को ठीक स्पर्श करेगा : (घन ईंच में)
 - (1) 72π
- (2) 54 π
- (3) 81π
- (4) 27π
- 07 (Mathematics)

- Three equal balls of 5 cm in diameter 17. lie on a floor so as to touch one another, and a fourth ball equal in radius is placed on them. The height of centre of the fourth ball above the floor in cm is:

 - (1) $\left(\frac{50}{3} + \frac{5}{2}\right)^{1/2}$ (2) $5\left(\sqrt{\frac{2}{3}} + \frac{1}{3}\right)$

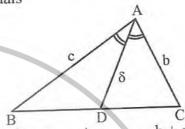
 - (3) $5\left(\sqrt{\frac{2}{3}}+1\right)$ (4) $5\left(\sqrt{\frac{2}{3}}+\frac{1}{2}\right)$
- A radian = λ (a right angle), then λ 18. equals (in radian) is
 - (1) π
- $(3) 3/\pi$
- If $\tan \theta = \frac{1}{\sqrt{7}}$, then the value of $\frac{\cos^2\theta - \sec^2\theta}{\csc^2\theta + \sec^2\theta}$ equals:

- From the top of a cliff, 60 metres high, 20. the angle of depression of the top and bottom of a tower are observed to be 30° and 60°. The height of the tower is
 - (1) 40 m
- (3) 60 \ \ 3 m
- A sphere of radius 2 inches is placed on 21. the top of another sphere of radius 3 inches. The volume of the cone that will just cover the both spheres (in cubic inches) is
 - (1) 72π
- (2) 54π
- (3) 81π
- (4) 27π

- 22. cos 22 1° बराबर है :

 - (1) $\frac{\sqrt{3}+\sqrt{2}}{2}$ (2) $\frac{\sqrt{2}-\sqrt{2}}{2}$

 - (3) $\frac{\sqrt{2+\sqrt{2}}}{2}$ (4) $\frac{\sqrt{1+\sqrt{2}}}{2}$
- 23. दिए गए चित्र में AD कोण A का समद्विभाजक है, तब इस समद्विभाजक की लम्बाई δ बराबर है


- (1) $\frac{b+c}{2bc}\cos\frac{A}{2}$ (2) $\frac{b+c}{bc}\cos\frac{A}{2}$
- (3) $\frac{2bc}{b+c}\cos\frac{A}{2}$ (4) $\frac{bc}{b+c}\cos\frac{A}{2}$
- यदि A + B + C = 180°, तब यदि 24. $\tan A + \tan B + \tan C = \lambda \tan A \cdot \tan A$ B · tan C, तो λ बराबर है :

- निम्न समीकरण का एक व्यापक हल हैं: $\sin x + \cos x = \sqrt{2} \cos A ; \left(x > \frac{\pi}{4} \right)$
 - (1) $2n \pi + \frac{\pi}{4} \pm A$ (2) $n \pi + \frac{\pi}{4} \pm A$

 - (3) $\frac{n\pi}{2} + \frac{\pi}{4} \pm A$ (4) $4n\pi + \frac{\pi}{4} + A$
- समीकरणों $\sin \theta = \frac{-1}{2}$ एवं $\tan \theta = \frac{1}{\sqrt{3}}$ को सन्तुष्ट करने वाला व्यापक हल

 - (1) $n \pi + \frac{7\pi}{6}$ (2) $2n \pi + \frac{7\pi}{6}$
 - (3) $2n \pi \frac{7\pi}{6}$ (4) $n \pi \pm \frac{7\pi}{6}$

- 22. $\cos 22 \frac{1}{2}^{\circ}$ equals
 - (1) $\frac{\sqrt{3}+\sqrt{2}}{2}$ (2) $\frac{\sqrt{2}-\sqrt{2}}{2}$
- - (3) $\frac{\sqrt{2+\sqrt{2}}}{2}$ (4) $\frac{\sqrt{1+\sqrt{2}}}{2}$
- In the given figure AD is the bisector of 23. angle A, then length of this bisector δ equals

- (1) $\frac{b+c}{2bc}\cos\frac{A}{2}$ (2) $\frac{b+c}{bc}\cos\frac{A}{2}$
- (3) $\frac{2bc}{b+c}\cos\frac{A}{2}$ (4) $\frac{bc}{b+c}\cos\frac{A}{2}$
- If $A + B + C = 180^\circ$, then if 24. $\tan A + \tan B + \tan C = \lambda \tan A \cdot \tan$ $B \cdot \tan C$, then λ equals
 - (1) -1
- (3) 2
- $(4) \frac{1}{2}$
- One of the general solution of 25. $\sin x + \cos x = \sqrt{2} \cos A \text{ is } ; \left(x > \frac{\pi}{4} \right)$
 - (1) $2n\pi + \frac{\pi}{4} \pm A$ (2) $n\pi + \frac{\pi}{4} \pm A$
- - (3) $\frac{n\pi}{2} + \frac{\pi}{4} \pm A$ (4) $4n\pi + \frac{\pi}{4} + A$
- The most general value of θ satisfying 26. both the equations $\sin \theta = \frac{-1}{2}$ and

 $\tan \theta = \frac{1}{\sqrt{2}}$ is

- (1) $n \pi + \frac{7\pi}{6}$ (2) $2n \pi + \frac{7\pi}{6}$
- (3) $2n \pi \frac{7\pi}{6}$ (4) $n \pi \pm \frac{7\pi}{6}$

- 27. $\left(2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7}\right)$ बराबर है:
 - $(1) \frac{\pi}{3}$
- (2) $\frac{\pi}{4}$
- (3) $\frac{\pi}{6}$ (4) $\frac{2\pi}{3}$
- 28. $\lim_{x\to 0} \left(\frac{a^x 1}{b^x 1} \right)$ बराबर है $(a \neq b)$
 - (1) logab
- (2) $\log_e\left(\frac{a}{b}\right)$
- (3) log_ba
- (4) log b
- 29. x = 0 पर फलन $\frac{\sin x}{|x|}$ के लिए सत्य कथन है :
 - (1) फलन अवकलनीय है।
 - (2) बायीं सीमा का अस्तित्व नहीं है।
 - (3) दायीं सीमा का अस्तित्व नहीं है।
 - (4) फलन असंतत् है।
 - यदि फलन f, x = a पर अवकलनीय है, तो 30. $\lim_{x \to a} \frac{x f(a) - a f(x)}{x - a}$ बराबर है :
 - (1) f(a) a f'(a) (2) a f(a) f'(a)
 - (3) a f(a) + f'(a) (4) f'(a) a f(a)
 - 31. $\tan^{-1} \left(\frac{\sqrt{1+x^2}-1}{x} \right)$ x > 0 का $\sin^{-1}\left(\frac{2x}{1+x^2}\right), x>0$ के सापेक्ष अवकलन है :
 - (1) 1/2 (2) 1/4 (3) 1 (4) 2
- - (3) 1
- 32. $\left(\sin^{-1}\frac{3}{5} \cos^{-1}\frac{12}{13}\right)$ बराबर है:

 - (1) $\sin^{-1}\frac{5}{13}$ (2) $\sin^{-1}\frac{16}{65}$
 - (3) $\tan^{-1} \frac{5}{16}$ (4) $\sin^{-1} \frac{56}{65}$

07 (Mathematics)

- 27. $\left(2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7}\right)$ equals:
 - (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{4}$

 - (3) $\frac{\pi}{6}$ (4) $\frac{2\pi}{3}$
- 28. $\lim_{x \to 0} \left(\frac{a^x 1}{b^x 1} \right)$ equals $(a \neq b)$
 - (1) log_eab
- (2) $\log_e\left(\frac{a}{b}\right)$
- (3) log_ha
- (4) log b
- 29. For function $\frac{\sin x}{|x|}$, at x = 0, the true statement is
 - (1) function is differentiable
 - (2) left hand limit does not exist
 - (3) right hand limit does not exist
 - (4) function is discontinuous
- If the function f is derivable at x = a, 30. then $\lim_{x \to a} \frac{x f(a) - a f(x)}{x - a}$ equals
 - (1) f(a) a f'(a) (2) a f(a) f'(a)
 - (3) a f(a) + f'(a) (4) f'(a) a f(a)
- The derivative of $\tan^{-1} \left(\frac{\sqrt{1+x^2-1}}{x} \right)$, 31.

x > 0 with respect to $\sin^{-1}\left(\frac{2x}{1+x^2}\right)$,

- x > 0 equals
- (1) 1/2
- (3) 1
- $\left(\sin^{-1}\frac{3}{5} \cos^{-1}\frac{12}{13}\right)$ equals: 32.

 - (1) $\sin^{-1}\frac{5}{13}$ (2) $\sin^{-1}\frac{16}{65}$
 - (3) $\tan^{-1}\frac{5}{16}$ (4) $\sin^{-1}\frac{56}{65}$

- किसी ईंजन के कार्य करने की गति निम्न सूत्र द्वारा दी गई है : $f(v) = 15v + \frac{6000}{v}$, $0 \le v \le 30$, जहाँ v इकाई ईंजन की गति है। तो कार्य करने की न्यूनतम दर के लिए ν का मान होगा
 - (1) 20 इकाई
- (2) 30 इकाई
- (3) 40/3 इकाई (4) 45/2 इकाई
- 34. यदि वक्र $\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} = 1$ के किसी बिन्दु (x, y) पर खींची गई स्पर्श रेखा के x एवं y अक्षों के साथ अन्तःखण्डों की लम्बाइयाँ p एवं q हो तो $\left(\frac{p}{a} + \frac{q}{b}\right)$ बराबर है:
 - (1) 1
- (2) 2
- (3) $\sqrt{2}$ (4) $\frac{1}{\sqrt{2}}$
- 35. निम्न वक्रों का प्रतिच्छेदन न्यून कोण हैं : $x^2 - y^2 = a^2, x^2 + y^2 = a^2\sqrt{2}$

 - (1) $\tan^{-1} 2$ (2) $\tan^{-1} \sqrt{2}$ (3) $\pi/4$ (4) $\pi/3$
- 36. Therefore $f(x) = \frac{\lambda \cos \theta + \sin \theta}{\sin \theta + 2 \cos \theta}$ वर्धमान होगी, यदि (1) $\lambda > 3$ (2) $\lambda < 2$

- (1) $\lambda > 5$ (3) $\lambda > 2$ (4) $\lambda < \frac{5}{2}$
- 37. फलन $f(x) = \sin 2x x$, जहाँ $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ है, के लिए सत्य कथन है :
 - (1) $x = \pi/3$ पर उच्चिष्ठ
 - (2) $x = \pi/6$ पर निम्निष्ठ
 - (3) न्यूनतम मान $\left(\frac{\pi}{6} \frac{\sqrt{3}}{2}\right)$ है।
 - (4) अधिकतम मान $\left(\frac{\pi}{6} + \frac{\sqrt{3}}{2}\right)$ है।

- The rate of working of an engine is given by $f(v) = 15v + \frac{6000}{v}$, $0 \le v \le 30$, v unit being the speed of the engine. Then the value of v for which the rate of working is least, is
 - (1) 20 unit

33.

- (2) 30 unit
- (3) 40/3 unit
- (4) 45/2 unit
- If p and q are the intercepts on x and y axes respectively of a tangent to any point (x, y) of the curve $\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} = 1$, then $\left(\frac{p}{a} + \frac{q}{b}\right)$ equals
 - (1) 1
- (3) $\sqrt{2}$
- 35. The acute angle of intersection of following curves is $x^2 - y^2 = a^2$, $x^2 + y^2 = a^2\sqrt{2}$

 - (1) $\tan^{-1} 2$ (2) $\tan^{-1} \sqrt{2}$
 - (3) $\pi/4$
- The function $f(x) = \frac{\lambda \cos \theta + \sin \theta}{\sin \theta + 2 \cos \theta}$ is 36. monotonically increasing if
 - (1) $\lambda > 3$

- (4) $\lambda < \frac{5}{2}$
- 37. The true statement for the function $f(x) = \sin 2x - x,$

where $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ is:

- (1) maxima at $x = \pi/3$
- (2) minima at $x = \pi/6$
- (3) minimum value is $\left(\frac{\pi}{6} \frac{\sqrt{3}}{2}\right)$
- (4) maximum value is $\left(\frac{\pi}{6} + \frac{\sqrt{3}}{2}\right)$

38. $\int \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx = \sin^{-1}(\sin x - \lambda \cos x)$ $+ C, \left(\frac{\pi}{4} < x < \frac{\pi}{2}\right)$ तब λ बराबर है :

$$(1) -1$$
 $(2) -2$ $(3) 1$ $(4) 2$

$$(2) -2$$

बराबर है:

$$(2) - x$$

$$(4) - 1$$

 $\int \sqrt{1 + \sec x} \, dx \, बराबर है :$

$$(1) \sin^{-1}\left[\sqrt{2}\sin\frac{x}{2}\right] + C$$

$$(2) \quad \frac{1}{\sqrt{2}} \sin^{-1} \left[\sqrt{2} \sin \frac{x}{2} \right] + C$$

(3)
$$2 \sin^{-1} \left[\sqrt{2} \sin \frac{x}{2} \right] + C$$

$$(4) \sqrt{2} \cos^{-1} \left[\sqrt{2} \cos \frac{x}{\sqrt{2}} \right] + C$$

41. $\int_{-\pi/2}^{\pi/2} \sqrt{\cos x - \cos^3 x} \, dx = \pi = \frac{\pi}{2}$

42. $\int_{0}^{3} |1-x| \, \mathrm{d}x \, \overline{a} \sqrt{8} :$

- (1) 1/2
- (3) 5/2

एक तरण ताल 40 मी. लम्बा, 20 मी. चौड़ा एवं 43. गहरे सिरे पर 8 मी. और उथले सिरे पर 3 मी. गहरा है, साथ ही ताल का तला आयताकार है। यदि ताल में 40 क्यूबिक (घन) मी. प्रति मिनट की दर से पानी भरा जाये तो (मीटर प्रति मिनट) की किस गति से गहरे सिरे पर पानी की सतह ऊँची होगी जबिक गहरे सिरे पर पानी 3 मी. है:

- (1) 1/12
- (2) 1/10
- (3) 1/8
- (4) 1/6

07 (Mathematics)

38. $\int \frac{\sin x + \cos x}{\sqrt{\sin 2x}} dx = \sin^{-1} (\sin x - \lambda \cos x)$ + C, $\left(\frac{\pi}{4} < x < \frac{\pi}{2}\right)$ then λ equals

- (3) 1

39. $\int e^{x} \left(\frac{x-1}{(x+1)^{3}} \right) dx = \frac{\lambda e^{x}}{(x+1)^{2}} + C, \text{ and } \lambda = \frac{\lambda}{(x+1)^{3}} dx = \frac{\lambda e^{x}}{(x+1)^{3}} + C, \text{ then } \lambda$ equals:

- (1) x
- (3) 1
- (4) 1

40. $\int \sqrt{1 + \sec x} \, dx$ equals

$$(1) \sin^{-1}\left[\sqrt{2}\sin\frac{x}{2}\right] + C$$

(2)
$$\frac{1}{\sqrt{2}} \sin^{-1} \left[\sqrt{2} \sin \frac{x}{2} \right] + C$$

(3)
$$2 \sin^{-1} \left[\sqrt{2} \sin \frac{x}{2} \right] + C$$

$$(4) \sqrt{2} \cos^{-1} \left[\sqrt{2} \cos \frac{x}{\sqrt{2}} \right] + C$$

41. $\int_{-\pi/2}^{\pi/2} \sqrt{\cos x - \cos^3 x} \, dx \text{ equals}$

- (2) 2/3
- (3) 4/3
- (4) 4/3

 $\int_{0}^{3} |1-x| \, dx \text{ equals}$

A swimming pool is 40 m long, 20 m 43. wide and 8 m deep at the deep end, and 3 m deep at shallow end, its bottom being rectangular. If the pool is filled by pumping water into it at rate of 40 cubic m per minute; how fast is the water level rising when it is 3 m deep at the deep end (in metre per minute)?

- (1) 1/12
- (2) 1/10
- (3) 1/8
- (4) 1/6

44. वक्र y = 4x(x-1)(x-2) एवं x-अक्ष द्वारा परिबद्ध क्षेत्र का (वर्ग इकाइयों में) क्षेत्रफल है :

45. ਕਨ੍ਹੀਂ $x = \sin^{-1} y$ एवं $x = \cos^{-1} y$ एवं y-अक्ष से घिरे प्रथम चतुर्थांश में स्थित क्षेत्र का (वर्ग इकाइयों में) क्षेत्रफल है :

(1) $\sqrt{2}-1$ (2) $\sqrt{2}+1$ (3) $\sqrt{3}-1$ (4) $\sqrt{3}+1$

बक्रों $y = x^2 + 2$, y = x, x = 0 एवं x = 3 द्वारा परिबद्ध क्षेत्र का वर्ग इकाइयों में क्षेत्रफल है

(1) 21/4 (3) 39/2

निम्न क्षेत्र द्वारा घेरे गये क्षेत्र का क्षेत्रफल (वर्ग इकाइयों में) है :

 $\{(x, y): x^2 + y^2 \le 1 \le x + \frac{y}{2}\}$

- (1) $\frac{\pi}{4} + \frac{2}{5} \frac{1}{2} \sin^{-1} \frac{3}{5}$
- (2) $\frac{\pi}{4} \frac{2}{5} \frac{1}{5} \sin^{-1} \frac{3}{5}$
- (3) $\frac{\pi}{4} + \frac{2}{5} + \frac{1}{2} \cos^{-1} \frac{3}{5}$
- (4) $\frac{\pi}{4} \frac{2}{5} \frac{1}{2} \cos^{-1} \frac{3}{5}$
- 48. त्रिभुज ABC की भुजाओं BC, CA एवं AB के मध्य बिन्दु क्रमशः D, E, F हैं । बिन्दु K, AD को 2: 1 के अनुपात में अन्तः विभाजित करता है, तो सत्य कथन है:

(1) बिन्दु K द्वारा BE. 1: 2 के अनुपात में अन्तेः विभाजित होती है।

(2) बिन्दु K द्वारा FC, 3 : 2 के अनुपात में अन्तः विभाजित होती है ।
(3) BE एवं CF दोनों 2 : 1 के अनुपात में

अन्तः विभाजित होती हैं।

(4) बिन्दु K, BE एवं CF को किसी स्वेच्छ अनुपात में विभाजित करता है।

49. $\log \left(\frac{1}{x} - 1\right) dx$ बराबर है :

(1) 1 (3) 1/2

The area enclosed by the curve y = 4x(x-1)(x-2) and x-axis (in sq. units) is

(1) 1(3) 3 (2) 2(4) 4

The area enclosed by the curves $x = \sin^{-1}y$ and $x = \cos^{-1}y$ and y-axis lying in the first quadrant (in sq. units)

(1) $\sqrt{2}-1$ (2) $\sqrt{2}+1$ (3) $\sqrt{3}-1$ (4) $\sqrt{3}+1$

The area of the region bounded by the 46. curves $y = x^2 + 2$, y = x, x = 0 and x = 3, in square units is

(1) 21/4

(2) 21/2

(3) 39/2

(4) 39/4

47. The area enclosed in the region

 $\{(x, y): x^2 + y^2 \le 1 \le x + \frac{y}{2}\}$

(in sq. units) is

(1)
$$\frac{\pi}{4} + \frac{2}{5} - \frac{1}{2} \sin^{-1} \frac{3}{5}$$

(2)
$$\frac{\pi}{4} - \frac{2}{5} - \frac{1}{2} \sin^{-1} \frac{3}{5}$$

(3)
$$\frac{\pi}{4} + \frac{2}{5} + \frac{1}{2} \cos^{-1} \frac{3}{5}$$

(4)
$$\frac{\pi}{4} - \frac{2}{5} - \frac{1}{2} \cos^{-1} \frac{3}{5}$$

48. ABC is a triangle and D, E, F are the middle points of sides BC, CA and AB respectively. Point K divides AD internally in the ratio 2:1, then the true statement is

(1) BE is divided internally by K in the ratio 1:2

(2) FC is divided internally by K in the ratio 3:2

(3) BE and CF both are divided internally in the ratio 2:1

(4) K divides BE and CF in an arbitrary ratio

49. $\int_{0}^{\infty} \log \left(\frac{1}{x} - 1 \right) dx$ equals

(2) 0

(3) 1/2

(4) 2

07 (Mathematics)

- समीकरण $ax^3 + bx^2y + cxy^2 + dy^3 = 0$ द्वारा निरूपित दो सरल रेखाएँ परस्पर लम्बवत् होंगी यदि $a^2+d^2+\lambda=0$ हो, तो λ बराबर है :
 - (1) ab + cd
- (2) ac + bd
- (3) ad + bc
- (4) abcd
- 51. एक बिन्दु P इस प्रकार गमन करता है कि किसी वर्ग की चारों भुजाओं से दूरियों के वर्ग का योग एक अचर रहता है, तो इस चर बिन्दु P का बिन्दुपथ होगा :
 - (1) सरल रेखाओं का युग्म
 - (2) वृत्त
 - (3) दीर्घवृत्त
 - (4) अतिपरवलय
- एक दीर्घवृत्त के संयुग्मी व्यासों के सिरे P एवं Q 52. हैं, तो PQ के मध्य बिन्दुओं का बिन्दुपथ होगा :
 - (1) दीर्घवृत्त का नियामक वृत्त
 - (2) एक अतिपरवलय
 - (3) समकोणीय अतिपरवलय
 - (4) सकेन्द्रीय दीर्घवृत्त
- 53. यदि e एवं e' क्रमश: अतिपरवलय एवं उसके संयुग्मी अतिपरवलय की उत्केन्द्रताएँ हों, तो सत्य कथन है :
- (1) e = -e' (2) $e^2 = 1 + e'^2$ (3) $\frac{1}{e^2} + \frac{1}{e'^2} = 1$ (4) ee' = 2
- 54. यदि सरल रेखा lx + my + n = 0, परवलय $y^2 = x$ को स्पर्श करें तो :
 - (1) lmn = 1 (2) $n^2 = 4 lm$ (3) $l^2 = mn$ (4) $m^2 = 4 ln$
- उस सरल रेखा का समीकरण जो रेखाओं 55. 2x - 3y + 4 = 0 एवं 3x + 4y - 5 = 0 के प्रतिच्छेदन बिन्दु से गुजरती हो एवं रेखा 6x - 7y + 8 = 0 के लम्बवत् हो, होगा,
 - (1) 119x + 102y = 125
 - (2) 119x 102y = 125
 - (3) -119x + 102y = 125
 - $(4) \quad 119x + 102y + 125 = 0$

07 (Mathematics)

- Two of the straight lines represented by 50. the equation $ax^3 + bx^2y + cxy^2 + dy^3 = 0$ will be at right angles if $a^2 + d^2 + \lambda = 0$, then λ equals:
 - (1) ab + cd
- (2) ac + bd
- (3) ad + bc
- (4) abcd
- A point P moves so that the sum of the 51. squares of its distances from the four sides of a square is constant; then the locus of this moving point P is
 - (1) pair of straight lines
 - (2) circle
 - (3) ellipse
 - (4) hyperbola
- If P and Q are the ends of the conjugate 52. diameters of an ellipse, then the locus of the middle points of PQ is
 - (1) director circle of the ellipse
 - (2) a hyperbola
 - (3) a rectangular hyperbola
 - (4) a concentric ellipse
- Let e and e' be the eccentricities of the 53. hyperbola and its conjugate hyperbola, then true statement is

$$(1) e = -e'$$

(2)
$$e^2 = 1 + e^{2}$$

(3)
$$\frac{1}{e^2} + \frac{1}{e'^2} = 1$$
 (4) $ee' = 2$

(4)
$$ee' = 2$$

- If the line lx + my + n = 0 touches the 54. parabola $y^2 = x$, then (1) lmn = 1 (2) $n^2 = 4 lm$
- (3) $l^2 = mn$
- (4) $m^2 = 4 \ln ln$

- The equation of the straight line which 55. passes through the intersection of the straight lines 2x - 3y + 4 = 0 and 3x + 4y - 5 = 0, and is perpendicular to the line 6x - 7y + 8 = 0 is
 - (1) 119x + 102y = 125
 - (2) 119x 102y = 125
 - (3) -119x + 102y = 125
 - $(4) \quad 119x + 102y + 125 = 0$

56. सरल रेखा

$$\overline{r} = (\hat{i} - \hat{j} + \hat{k}) + \lambda (2\hat{i} - \hat{j} + 3\hat{k})$$

एवं समतल $\vec{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) = 4$ के मध्य कोण

- (1) $\pi/2$
- (2) $\pi/3$
- (3) $\pi/6$
- (4) 0°
- 57. सरल रेखाएँ

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 $var{q}$

 $\frac{x-4}{5} = \frac{y-1}{2} = z$ का प्रतिच्छेद बिन्दु है :

- (1) (1, 2, 3) (2) (4, 1, 0)
- $(3) \ (-1,-1,-1) \qquad (4) \ (1,1,1)$
- रेखाएँ $\bar{r} = \bar{a}_1 + \lambda \, \bar{b}_1$ एवं $\bar{r} = \bar{a}_2 + \mu \, \bar{b}_2$ के 58. मध्य न्यूनतम द्री है:

(1)
$$\frac{(\overline{b}_1 \times \overline{b}_2) \cdot (\overline{a}_2 - \overline{a}_1)}{\overline{b}_1 \cdot \overline{b}_2}$$

(2)
$$\left| \frac{(\overline{b}_1 \times \overline{b}_2) \cdot (\overline{a}_2 - \overline{a}_1)}{\left| (\overline{b}_1 \times \overline{b}_2) \right|} \right|$$

$$(3) \quad \left| \frac{\left| \overline{b}_1 \times \overline{b}_2 \right| \left| \overline{a}_1 \cdot \overline{a}_2 \right|}{\overline{b}_1 \cdot \overline{b}_2} \right|$$

- 59. निम्न सरल रेखाओं के मध्य कोण है :

$$\overline{r} = 4 \hat{i} - \hat{j} + \lambda (\hat{i} + 2\hat{j} - 2\hat{k})$$
 एवं

$$\vec{r} = \hat{i} - \hat{j} + 2\hat{k} + \mu (2\hat{i} + 4\hat{j} - 4\hat{k})$$

- (1) $\pi/2$ (2) $\pi/3$
- (3) $\pi/6$
- (4) 0°

56. The angle between the line

$$\overline{r} = (\hat{i} - \hat{j} + \hat{k}) + \lambda (2\hat{i} - \hat{j} + 3\hat{k})$$

and the plane $\vec{r} \cdot (2\hat{i} + \hat{j} - \hat{k}) = 4$ is

- (1) $\pi/2$
- (2) $\pi/3$
- (3) $\pi/6$
- (4) 0°
- 57. Following lines

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 and

 $\frac{x-4}{5} = \frac{y-1}{2} = z$ intersect at point :

- (1) (1, 2, 3) (2) (4, 1, 0)
- (3) (-1,-1,-1) (4) (1,1,1)
- Shortest distance between the lines 58. $\bar{r} = \bar{a}_1 + \lambda \bar{b}_1$ and $\bar{r} = \bar{a}_2 + \mu \bar{b}_2$ is:

$$(1) \quad \left| \frac{(\overline{b}_1 \times \overline{b}_2) \cdot (\overline{a}_2 - \overline{a}_1)}{\overline{b}_1 \cdot \overline{b}_2} \right|$$

(2)
$$\frac{(\overline{b}_1 \times \overline{b}_2) \cdot (\overline{a}_2 - \overline{a}_1)}{\left| (\overline{b}_1 \times \overline{b}_2) \right|}$$

(3)
$$\frac{\left| \overline{b}_1 \times \overline{b}_2 \right| \left| \overline{a}_1 \cdot \overline{a}_2 \right|}{\overline{b}_1 \cdot \overline{b}_2}$$

$$(4) \left[\frac{|\overline{b}_1 \times \overline{b}_2|}{\overline{a}_1 \cdot \overline{a}_2} \right]$$

The angle between following pair of 59.

$$\vec{r} = 4 \hat{i} - \hat{j} + \lambda (\hat{i} + 2\hat{j} - 2\hat{k})$$
 and

$$\vec{r} = \hat{i} - \hat{j} + 2\hat{k} + \mu (2\hat{i} + 4\hat{j} - 4\hat{k})$$

- (1) $\pi/2$
- (2) $\pi/3$
- (3) $\pi/6$
- (4) 0°
- 07 (Mathematics)

- समतल lx + my = 0 को तल z = 0 के साथ 60. प्रतिच्छेद से प्राप्त रेखा के परित: α कोण से घुमाया जाता है, तो समतल का इस नई स्थिति में समीकरण $lx + my \pm z \lambda \sqrt{l^2 + m^2} = 0$ है, तो λ बराबर है :
 - (1) cot α
- (2) $\tan \alpha$
- (3) $\sin \alpha$
- (4) cos α
- समतल $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ निर्देशांक अक्षों को बिन्दुओं P, Q, R में मिलता है, तो त्रिभुज PQR का क्षेत्रफल है :

- (1) $(\Sigma a^2 b^2)^{1/2}$ (2) $\frac{1}{2} (\Sigma ab)^{1/2}$ (3) $\frac{1}{2} \Sigma (a, b)$ (4) $\frac{1}{2} (\Sigma a^2 b^2)^{1/2}$
- सरल रेखा NL पर बिन्दु P(5, 9, 3) से लम्ब PN खींचा जाता है, जो $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ से प्रदर्शित है, तो लम्बपाद N के निर्देशांक हैं:

- (1) (2, 3, 4) (3) (1, 2, 3) (2) (3, 5, 7) (4) (-5, -9, -3)
- 25 प्रेक्षणों के समूह की माध्य एवं मानक विचलन 63. की गणना क्रमश: 20 एवं 5 की गयी । बाद में ज्ञात हुआ कि प्रेक्षणों के अभिलेखन में त्रुटि हुई हैं; 22 के स्थान पर 12 लिखा गया है । प्रेक्षणों को त्रुटि विहीन करने के पश्चात् मानक विचलन होगा (लगभग):
 - (1) 4.4
- (2) 4.5 (4) 4.9
- (3) 4.7
- माना किसी लम्ब कोणीय समान्तर षटफलक के 64. कोरों की लम्बाइयाँ a, b, c हैं, तो इसके विकर्णों एवं उन कोरों जो उसे नहीं मिलती है, के मध्य न्यूनतम द्रियाँ निम्न हैं:
 - $\lambda bc/\sqrt{b^2+c^2}$, $\lambda ca/\sqrt{c^2+a^2}$,
 - $\lambda ab/\sqrt{a^2+b^2}$, तब λ बराबर है:
 - (1) 1/3
- (2) 1/2
- (3) 2
- (4) 1
- 07 (Mathematics)

The plane lx + my = 0 is rotated about 60. its line of intersection with the plane z = 0 through an angle α . The equation of plane in its new position is

 $lx + my \pm z \lambda \sqrt{l^2 + m^2} = 0$, then λ is:

- (1) cot α
- (2) $\tan \alpha$
- (3) $\sin \alpha$
- (4) $\cos \alpha$
- 61. Plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ meets the axes at P,
 - Q, R. The area of the triangle PQR is:
 - (1) $(\Sigma a^2 b^2)^{1/2}$ (2) $\frac{1}{2} (\Sigma ab)^{1/2}$

 - (3) $\frac{1}{2}\Sigma$ (a, b) (4) $\frac{1}{2}(\Sigma a^2 b^2)^{1/2}$
- A perpendicular PN is drawn from 62. P(5, 9, 3) upon a line NL given by $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, the coordinates of foot of perpendicular N are:
 - (1) (2, 3, 4)
- (2) (3, 5, 7)
- (3) (1, 2, 3)
- (4) (-5, -9, -3)
- The mean and standard deviation of a 63. group of 25 observations were calculated to be 20 and 5 respectively. It was later found that there was an error in recording one observation; it was recorded as 12 instead of 22. The standard deviation when the error is corrected is (approx.):
 - (1) 4.4
- (3) 4.7
- (4) 4.9
- Let a, b, c be lengths of edges of a 64. rectangular parallelopiped. Then the shortest distance between a diagonal and its edges not meeting the diagonal

$$\lambda bc/\sqrt{b^2+c^2}$$
, $\lambda ca/\sqrt{c^2+a^2}$,

- $\lambda ab/\sqrt{a^2+b^2}$, then λ is:
- (1) 1/3
- (2) 1/2

- (3) 2
- (4) 1

- स्वेच्छा से चयनित चार पूर्णांकों को परस्पर गुणा 65. किया गया । अन्तिम अंक के 9 या 7 या 3 या 1 होने की प्रायिकता है :
 - (1) 16/625
- (2) (64/625)
- (3) (4!)/(9!)
- $(4) 1 (2/5)^4$
- माना $\overline{a} = 2\overline{m} + \overline{n}$ एवं $\overline{b} = \overline{m} 2\overline{n}$ किसी 66. समान्तर चतुर्भुज की आसन्न भुजाओं को प्रदर्शित करते हैं, जहाँ इकाई सिंदश $\overline{\mathbf{m}}$ एवं $\overline{\mathbf{n}}$ के मध्य 60° का कोण है, तो समान्तर चतुर्भुज के विकर्णों की लम्बाइयाँ हैं :

- (1) $\sqrt{5}, \sqrt{5}$ (2) $1, \sqrt{3}$ (3) $\sqrt{7}, \sqrt{13}$ (4) $\sqrt{2}, \sqrt{17}$
- 67. निम्न में से सत्य कथन का चयन कीजिए:
 - (1) $(\overline{a} \times \overline{b})^2 = (\overline{a})^2 (\overline{b})^2 (\overline{a} \cdot \overline{b})^2$
 - (2) $(\overline{a} \times \overline{b})^2 = (\overline{a})^2 (\overline{b})^2 + (\overline{a} \cdot \overline{b})^2$
 - (3) यदि $|\bar{a} + \bar{b}| = |\bar{a} \bar{b}|$, तो \bar{a} एवं \bar{b} परस्पर लम्बवत नहीं है।
 - (4) यदि a एवं b इकाई सदिश हों एवं 0 उनके मध्य कोण हो तो $\cos \frac{\theta}{2} = \frac{1}{2} |\overline{a} - \overline{b}|$.
- किसी निर्माण विधि में 100 बल्बों में 10 बल्बों 68. के त्र्दिपूर्ण होना एवं 90 को ठीक होना पाया गया, तो 8 बल्बों के किसी नमूने में कम से कम एक बल्ब के त्रुटिपूर्ण होने की प्रायिकता है:
 - (1) $\left(1-\frac{9}{10}\right)^8 \frac{8!}{10!}$
 - $(2) \quad \left(\frac{9}{10}\right)^8 \left(\frac{8}{9}\right)$
 - (3) $\left(\frac{9}{10}\right)^8$
 - (4) $1 \left(\frac{9}{10}\right)^8$

- Four whole numbers taken at random 65. are multiplied together. The chance that the last digit in the product is 9 or 7 or 3 or 1 is:
 - (1) 16/625
- (2) (64/625)
- (3) (4!)/(9!) (4) $1-(2/5)^4$
- Let $\overline{a} = 2\overline{m} + \overline{n}$ and $\overline{b} = \overline{m} 2\overline{n}$ be the 66. adjacent sides of a parallelogram, where \overline{m} and \overline{n} are unit vectors inclined at an angle of 60°. The lengths of the diagonals of parallelogram are:
 - (1) $\sqrt{5}, \sqrt{5}$ (2) $1, \sqrt{3}$ (3) $\sqrt{7}, \sqrt{13}$ (4) $\sqrt{2}, \sqrt{17}$
- The true statement is 67.
 - (1) $(\overline{a} \times \overline{b})^2 = (\overline{a})^2 (\overline{b})^2 (\overline{a} \cdot \overline{b})^2$
 - (2) $(\overline{a} \times \overline{b})^2 = (\overline{a})^2 (\overline{b})^2 + (\overline{a} \cdot \overline{b})^2$
 - (3) If $|\overline{a} + \overline{b}| = |\overline{a} \overline{b}| \Rightarrow \overline{a}$ and \overline{b} are not perpendicular.
 - (4) If a and b are unit vectors and θ is the angle between them, then $\cos\frac{\theta}{2} = \frac{1}{2}|\overline{a} - \overline{b}|.$
- bulbs from of 100 68. manufacturing process is known to and defective contain 10 non-defective bulbs. If a sample of 8 bulbs is selected at random, the probability that the sample has atleast one defective bulb is:
 - (1) $\left(1-\frac{9}{10}\right)^8 \frac{8!}{10!}$
 - (2) $\left(\frac{9}{10}\right)^{8} \left(\frac{8}{9}\right)$
 - (3) $\left(\frac{9}{10}\right)^8$
 - (4) $1 \left(\frac{9}{10}\right)^8$

- 69. समुच्चयों X एवं Y के लिए फलन $f: x \to y$ ऐकैकी एवं आच्छादक है तो निम्न में से सत्य कथन है :
 - (1) f^{-1} ना तो ऐकैकी है एवं ना ही आच्छादक है।
 - (2) f^{-1} ऐकैकी तो है परन्तु आच्छादक नहीं है ।
 - (3) f⁻¹ आच्छादक तो है परन्तु ऐकैकी नहीं है।
 - (4) f⁻¹ ऐकैकी एवं आच्छादक दोनों हैं।
- समुच्चय G के अवयव e, a, b, c के अन्तर्गत * 70. संक्रिया के द्वारा संयुक्त होने का नियम संलग्न तालिका द्वारा प्रदर्शित है, तो समूह (G, *) के लिए सत्य कथन है :

*	e	a	b	c
e	e	a	b	С
a	a	e	c	b
b	b	c	e	a
c	c	b	a	e

- (1) * क्रम विनिमेय नहीं है।
- (2) e तत्समक नहीं है।
- (3) प्रत्येक अवयव का प्रतिलोम विद्यमान नहीं
- (4) G एक आबेली समूह है।
- माना $H_1 = \{0, \pm 2, \pm 4, \pm 6, \dots\},$ 71. $H_2 = \{0, \pm 3, \pm 6, \pm 9, \dots \},$ एवं $Z = \{0, \pm 1, \pm 2, \pm 3, \dots\},$

तो सत्य कथन है

- (1) (H₁∪H₂, +), (Z, +) का उपसमूह नहीं है।
 (2) (H₁, +), (Z, +) का उपसमूह नहीं है।
- (3) $(H_2, +), (Z, +)$ का उपसमूह नहीं है।
- (4) $(H_1 \cap H_2, +)$, (Z, +) का उपसमूह नहीं है ।
- 72. माना P, Q, R सार्वत्रिक समुच्चय के उचित उपसमुच्चय हैं, तो सत्य कथन है :
 - $(1) (P \cup Q)' = P' \cup Q'$
 - $(2) \quad (P \cup Q)' = P' \cap Q'$
 - (3) $(P \cup Q) \cup R = P \cap (Q \cup R)$
 - (4) $P \cup (Q \cap R) = (P \cap Q) \cup (P \cap R)$
- 07 (Mathematics)

- Let X and Y be sets and $f: x \to y$ be 69. one-one and onto function, then the true statement is:
 - (1) f⁻¹ is neither one-one nor onto function.
 - (2) f -1 is one-one but not onto function.
 - (3) f^{-1} is onto but not one-one function.
 - (4) f⁻¹ is one-one as well as onto
- The rule of combination of a set G of elements e, a, b, c under an operation * is displayed in the adjoining operation table. Then for the group (G, *), the true statement is:

laten.	ICIIL I	٥.		-
*	e	a	b	c
е	e	a	b	c
a	a	e	С	b
b	b	c	e	a
c	c	b	a	e

- (1) * is not commutative.
- (2) e is not the identity.
- (3) every element does not have an inverse.
- (4) G is an abelian group.
- Let $H_1 = \{0, \pm 2, \pm 4, \pm 6, \dots\}$ 71. $H_2 = \{0, \pm 3, \pm 6, \pm 9, \dots\}$ and $Z = \{0, \pm 1, \pm 2, \pm 3, \dots\},\$

then the true statement is

- (1) $(H_1 \cup H_2, +)$ is not a subgroup of (Z, +)
- (2) $(H_1, +)$ is not a subgroup of (Z, +)
- (3) $(H_2, +)$ is not a subgroup of (Z, +)
- (4) $(H_1 \cap H_2, +)$ is not a subgroup of
- Let P, Q, R be proper subsets of 72. universal set, then true statement is:
 - $(1) (P \cup Q)' = P' \cup Q'$
 - $(2) \quad (P \cup Q)' = P' \cap Q'$
 - $(3) (P \cup Q) \cup R = P \cap (Q \cup R)$
 - (4) $P \cup (Q \cap R) = (P \cap Q) \cup (P \cap R)$

- 73. यदि $u = (8x^2 + y^2) (\log x \log y)$, तब $\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}\right)$ बराबर है
 - (1) u/2
- (2) 2u
- (3) u
- (4) -2u
- 74. a > 0 के लिए फलन $f(x, y) = xy + \frac{a^3}{a^3} + \frac{a^3}{a^3}$ का न्यूनतम मान होगा:
 - (1) a^2
- $(2) 2a^2$
- $(3) 3a^2$
- $(4) 4a^2$
- 75. $\frac{-5}{2}$ का मान है:

 - (1) $(-8\sqrt{\pi})/5$ (2) $(-8\sqrt{\pi})/15$
 - (3) $(4\sqrt{\pi})/5$ (4) $(\sqrt{\pi})/3$
- 76. x = 0, y = 0, ax + by = 1 द्वारा परिबद्ध त्रिभुज पर परिभाषित | eax + by dx dy का मान होगा
- (2) a/b
- (3) b/a
- (4) 1/ab
- 77. ऊपर के अर्धवृत्त $r = a \cos \theta$ पर

$$\int \int [r \sqrt{a^2 - r^2}] dr d\theta का मान होगा$$

- (1) $\frac{-a^3}{3} \left(\frac{2}{3} + \frac{\pi}{2} \right)$ (2) $\frac{-a^3}{3} \left(\frac{2}{3} \frac{\pi}{2} \right)$
- (3) $\frac{a^3}{3} \left(\frac{\pi}{2} + 1 \right)$ (4) $\frac{-a^3}{3} \left(\frac{\pi}{2} 1 \right)$
- 78. $a = au + bv, y^2 = au bv, a$ $\left(\frac{\partial \mathbf{u}}{\partial x}\right) \cdot \left(\frac{\partial x}{\partial \mathbf{u}}\right)$ बराबर है
 - (1) 1

- (3) $-\frac{1}{2}$ (4) $\frac{1}{2}$

- 73. If $u = (8x^2 + y^2) (\log x \log y)$, then $\left(x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y}\right)$ equals
 - (1) u/2
- (2) 2u
- (3) u
- (4) -2u
- The minimum value of f(x, y) = xy +74. $\frac{a^3}{x} + \frac{a^3}{y}$ for a > 0 is:

- **75.** Value of $\frac{-5}{2}$ is :
 - (1) $(-8\sqrt{\pi})/5$ (2) $(-8\sqrt{\pi})/15$ (3) $(4\sqrt{\pi})/5$ (4) $(\sqrt{\pi})/3$
- The value of $\iint e^{ax + by} dx dy$, over the 76. triangle bounded by x = 0, y = 0, ax + by = 1 is
 - (1) ab
- (2) a/b
- (3) b/a
- 77. The value of $\int r \sqrt{a^2 r^2} dr d\theta$, over upper half of the circle $r = a \cos \theta$ is
 - (1) $\frac{-a^3}{3} \left(\frac{2}{3} + \frac{\pi}{2} \right)$ (2) $\frac{-a^3}{3} \left(\frac{2}{3} \frac{\pi}{2} \right)$

 - (3) $\frac{a^3}{3} \left(\frac{\pi}{2} + 1 \right)$ (4) $\frac{-a^3}{3} \left(\frac{\pi}{2} 1 \right)$
- 78. If $x^2 = au + bv$, $y^2 = au bv$, then $\left(\frac{\partial \mathbf{u}}{\partial x}\right) \cdot \left(\frac{\partial x}{\partial \mathbf{u}}\right)$ is equal to
 - (1) 1
- (2) -1
- (3) $-\frac{1}{2}$ (4) $\frac{1}{2}$

- यदि विभाजन P का P* एक शोधन हो तो किसी परिबद्ध फलन f के लिए सत्य कथन है कि :
 - (1) $L(P^*, f) < L(P, f)$
 - (2) $L(P^*, f) > U(P, f)$
 - (3) $L(P^*, f) \ge L(P, f)$
 - (4) $U(P^*, f) \ge U(P, f)$
- 80. अन्तराल $\left[0,\frac{\pi}{4}\right]$ में फलन f(x) निम्न प्रकार

$$f(x) = \left\{ \begin{array}{l} \cos x \;\;,\;\; \mathrm{ulc} \; x \; \mathrm{ulthu} \; \mathrm{th} \; \mathrm{$$

अब यदि $\left[0, \frac{\pi}{4}\right]$ में P एक विभाजन है, तो sup

L (f, P) का मान है :

- (1) $1 + \frac{1}{\sqrt{2}}$ (2) $1 + \sqrt{2}$ (3) $1 \sqrt{2}$ (4) $1 \frac{1}{\sqrt{2}}$

- 81. एक कण वक्र $x = t^3 + 1$, $y = t^2$, z = 2t + 5के अनुदिश गति करता है, तो t = 1 पर $(\hat{i} + \hat{j} + \hat{k})$ की दिशा में कण का त्वरण होगा :
- (1) 8 (2) $8/\sqrt{3}$ (3) $(6\hat{i} + 2\hat{j})$ (4) $7/\sqrt{3}$
- 82. बिन्दु A(1, -1, 0) पर फलन f(x, y, z) = $x(x^2 - y^2) - z$ का $\vec{p} = (2\hat{i} - 3\hat{j} + 6\hat{k})$ की दिशा के अन्दिश दिक् अवकलन होगा:
 - (1) -8/49
- (2) **8/7** (4) 0
- (3) -8/7
- 83. श्रेणी $\left(\sum_{n=1}^{\infty} \frac{x^{n-1}}{n(3^n)}\right)$ के लिए सत्य कथन है :
 - (1) अभिसारी यदि x > 3
 - (2) अपसारी यदि x > 1
 - (3) अपसारी यदि x > 0
 - (4) अभिसारी यदि x < 3
- 07 (Mathematics)

- 79. If P* is a refinement of a partition P, then for a bounded function f, the true statement is:
 - (1) $L(P^*, f) < L(P, f)$
 - (2) $L(P^*, f) > U(P, f)$
 - (3) $L(P^*, f) \ge L(P, f)$
 - (4) $U(P^*, f) \ge U(P, f)$
- On $\left[0, \frac{\pi}{4}\right]$, the function f(x) is defined 80. as below:

$$f(x) = \begin{cases} \cos x, & \text{if } x \text{ is rational} \\ \sin x, & \text{if } x \text{ is irrational} \end{cases}$$

now if P is a partition in $\left| 0, \frac{\pi}{4} \right|$, then sup L (f, P) is:

- (1) $1 + \frac{1}{\sqrt{2}}$ (2) $1 + \sqrt{2}$ (3) $1 \sqrt{2}$ (4) $1 \frac{1}{\sqrt{2}}$

- A particle moves along the curve 81. $x = t^3 + 1$, $y = t^2$, z = 2t + 5. The component of its acceleration at t = 1 in the direction $(\hat{i} + \hat{j} + \hat{k})$ is:
- (1) 8 (2) $8/\sqrt{3}$ (3) $(6\hat{i} + 2\hat{j})$ (4) $7/\sqrt{3}$
- directional derivative The $f(x, y, z) = x(x^2 - y^2) - z$ at A(1, -1, 0)in the direction of $\vec{p} = (2\hat{i} - 3\hat{j} + 6\hat{k})$ is: (1) -8/49 (2) 8/7(3) -8/7 (4) 0

- The true statement for the series 83.
 - (1) convergent if x > 3
 - (2) divergent if x > 1
 - (3) divergent if x > 0
 - (4) convergent if x < 3

- 84. यदि C एक वृत्त $x^2 + y^2 = 1$ है तो निम्न का मान है $\oint_C [(\cos x \sin y xy) dx + \sin x \cos y dy]$:
 - (1) 0
- (2) 1
- (3) $\pi/2$
- (4) π
- 85. निम्न में से कौन सा सत्य कथन है ?
 - (1) grad div \overline{f} = curl curl \overline{f} $\nabla^2 \overline{f}$
 - (2) grad curl $\overline{f} = 0$
 - (3) curl div $\overline{f} = 0$
 - (4) $\frac{1}{2}$ grad $f^2 = \overline{f} \times \text{curl } \overline{f} + (\overline{f} \cdot \nabla) \overline{f}$
- **86.** $\overline{f} = 3xy$ $i y^2$ \hat{j} के लिए $\int_C \overline{f} \cdot d\overline{r}$, का मान ज्ञात कीजिये जहाँ C xy समतल में (0, 0) से (1, 2) के मध्य वक्र $y = 2x^2$ है
 - (1) -7/6
- (2) 7/6
- (3) 25/6
- (4) -25/6
- 87. यदि $|\bar{p}(s)|$ एक अशून्य अचर है, तो $\frac{d\bar{p}}{ds}$ की दिशा होगी :
 - (1) $\overline{p}(s)$ की दिशा के लम्बवत्
 - (2) $\overline{p}(s)$ की दिशा के समान्तर
 - (3) $\bar{p}(s)$ की दिशा से सदैव न्यून कोण पर होगी
 - (4) इसकी कोई भी दिशा हो सकती है।
- 88. बिन्दु A(a, 0, 0) से $B(a, 0, 2\pi b)$ के मध्य वक्र $\overline{r} = (a \cos t) \hat{i} + (a \sin t) \hat{j} + b t \hat{k}$ के अनुदिश $\int_{A}^{B} (\overline{r} \times d\overline{r})$ का मान है :
 - (1) $\pi a(b\hat{j} + a\hat{k})$
 - (2) $2\pi a \left(a\hat{j} + b\hat{k} + ab\hat{i}\right)$
 - (3) $2\pi a(a\hat{j} + b\hat{k})$
 - (4) $2\pi a(b\hat{j} + a\hat{k})$

- 84. The value of $\oint_C [(\cos x \sin y xy) dx + \sin x \cos y dy]$ where C is the circle $x^2 + y^2 = 1$, is:
 - (1) 0
- (2) 1
- (3) $\pi/2$
- (4) π
- 85. The true statement is:
 - (1) grad div $\overline{f} = \text{curl curl } \overline{f} \nabla^2 \overline{f}$
 - (2) grad curl $\overline{f} = 0$
 - (3) curl div $\overline{f} = 0$
 - (4) $\frac{1}{2} \operatorname{grad} f^2 = \overline{f} \times \operatorname{curl} \overline{f} + (\overline{f} \cdot \nabla) \overline{f}$
- 86. If $\overline{f} = 3xy \hat{i} y^2 \hat{j}$, evaluate $\int_C \overline{f} \cdot d\overline{r}$, where C is the curve $y = 2x^2 \text{ in } xy$ plane from (0, 0) to (1, 2).
 - (1) -7/6
- (2) 7/6
- (3) 25/6
- (4) -25/6
- 87. If $|\overline{p}(s)|$ is a non-zero constant, then direction of $\frac{d\overline{p}}{ds}$ is:
 - (1) perpendicular to direction of $\overline{p}(s)$.
 - (2) parallel to direction of $\overline{p}(s)$.
 - (3) always makes acute angle with $\overline{p}(s)$.
 - (4) it can have any direction.
- 88. The value of $\int_{A}^{B} (\overline{r} \times d\overline{r})$ from A(a, 0, 0) to B(a, 0, 2π b) along $\overline{r} = (a \cos t) \hat{i} + (a \sin t) \hat{j} + b t \hat{k}$ is:
 - (1) $\pi a(b\hat{j} + a\hat{k})$
 - (2) $2\pi a (a\hat{j} + b\hat{k} + ab\hat{i})$
 - (3) $2\pi a(a\hat{j} + b\hat{k})$
 - (4) $2\pi a(b\hat{j} + a\hat{k})$

89.
$$y(2) = (\log 2)^2$$
 के लिए $(x \log x)$ $\frac{dy}{dx} = 2y$ का हल है:

(1)
$$y = \frac{x^2}{4} (\log x)^2$$

$$(2) \quad y = (\log 2) \cdot (\log x)$$

$$(3) \quad y = (\log x)^2$$

(4)
$$y = (\log x^2)$$

90.
$$y(1) = 0$$
 के लिए $(x+y)dx + (3x+3y-4) dy = 0$ का हल है :

(1)
$$(x+3y) + 2 \log |(x+y-2)| = 1$$

(2)
$$(3x + y) + 2 \log |x + y - 2| = 1$$

(3)
$$(x+3y)+2\log|x+y+2|=1$$

(4)
$$(3x + y) + 2 \log |(x + y + 2)| = 1$$

91. अवकल समीकरण
$$(D^2 - 2D - 1)$$
 $y = e^x$ $\cos x$ का विशेष समाकल है :

$$(1) \quad \frac{1}{3} e^x \cos x$$

(1)
$$\frac{1}{3}e^x \cos x$$
 (2) $-\frac{1}{3}e^x \cos x$

$$(3) - e^x \cos x$$

(3)
$$-e^x \cos x$$
 (4) $-\frac{1}{3}e^x \sin x$

(1)
$$e^{-2x} \cdot e^{e^x} + e^x$$
 (2) $e^{2x} \cdot e^{e^x}$

(3)
$$e^{-2x} \cdot e^{e^x}$$
 (4) e^{e^x}

$$(4) e^{e^x}$$

अवकल समीकरण 93.

$$(x+2)\frac{d^2y}{dx^2} - (2x+5)\frac{dy}{dx} + 2y = (x+1)e^x$$

के लिए एक पूरक फलन है : (1) $y = e^{2x}$ (2) y = x(3) $y = e^{x}$ (4) $y = e^{-x}$

(1)
$$y = e^{2x}$$

(2)
$$y = x$$

(3)
$$y = e^x$$

(4)
$$y = e^{-x}$$

94.
$$\frac{dy}{dx} = 1 + \tan(y - x)$$
 का हल है:

(1)
$$\sin(y + x) = e^{-x} + C$$

(2)
$$\sin(y - x) = e^x + C$$

(3)
$$\cos(y-x) = e^{-x} + C$$

(4)
$$\cos(y - x) = e^x + C$$

89. Solution of
$$(x \log x) \frac{dy}{dx} = 2y$$

for
$$y(2) = (\log 2)^2$$
, is:

(1)
$$y = \frac{x^2}{4} (\log x)^2$$

(2)
$$y = (\log 2) \cdot (\log x)$$

$$(3) \quad y = (\log x)^2$$

$$(4) \quad y = (\log x^2)$$

90. The solution of
$$(x + y)dx + (3x + 3y - 4) dy = 0$$

for $y(1) = 0$ is:

(1)
$$(x+3y) + 2 \log |(x+y-2)| = 1$$

(2)
$$(3x + y) + 2 \log |x + y - 2| = 1$$

(3)
$$(x + 3y) + 2 \log |x + y + 2| = 1$$

(4)
$$(3x + y) + 2 \log |(x + y + 2)| = 1$$

91. For the differential equation
$$(D^2 - 2D - 1) y = e^x \cos x$$
, the particular integral is:

(1)
$$\frac{1}{3}e^x \cos x$$
 (2) $-\frac{1}{3}e^x \cos x$
(3) $-e^x \cos x$ (4) $-\frac{1}{3}e^x \sin x$

(3)
$$-e^x \cos x$$
 (4) $-\frac{1}{3}e^x \sin x$

92. For the differential equation
$$(D^2 + 3D + 2)y = e^{e^x}$$
, the particular integral is:

(1)
$$e^{-2x} \cdot e^{e^x} + e^x$$
 (2) $e^{2x} \cdot e^{e^x}$

(3)
$$e^{-2x} \cdot e^{e^x}$$

$$(4) e^{e^x}$$

(3)
$$e^{-2x} \cdot e^{e^x}$$
 (4) e^{e^x} 93. For the differential equation

$$(x+2)\frac{d^2y}{dx^2} - (2x+5)\frac{dy}{dx} + 2y = (x+1)e^x$$

one of the complementary function is:

(1)
$$y = e^{2x}$$
 (2) $y = x$
(3) $y = e^{x}$ (4) $y = e^{-x}$

$$(2) y = x$$

(3)
$$y = e^{x}$$

(4)
$$y = e^{-x}$$

94. Solution of
$$\frac{dy}{dx} = 1 + \tan(y - x)$$
 is:

(1)
$$\sin(y + x) = e^{-x} + C$$

$$(2) \sin(y-x) = e^x + C$$

(3)
$$\cos(y-x) = e^{-x} + C$$

$$(4) \cos(y-x) = e^x + C$$

- समतलीय बल 7P, 8P एवं 5P किसी बिन्दु पर कार्यरत हैं एवं वह बिन्दु साम्यावस्था में है, तो बलों 8P एवं 5P के मध्य कोण है :
 - (1) 30°
- (2) 45°
- (3) 60°
- (4) 120°
- तीन संगामी बलों की क्रिया रेखाओं OP, OQ, 96. OR को एक सरल रेखा क्रमश: A', B', C' पर काटती है। यदि R बलों P एवं Q का परिणामी बल है, एवं $\frac{P}{OA'} * \frac{Q}{OB'} = \frac{R}{OC'}$, तो * है:

- $(1) \div (2) (3) + (4) \times$
- संख्यात्मक रूप से किसी बल का एक बिन्दु के परितः आधूर्ण = λ (उस त्रिभुज के क्षेत्रफल के तुल्य है, जो बल को निरूपित करने वाली रेखा और दिये हुए बिन्दु को इस रेखा के सिरों से मिलाने वाली रेखाओं द्वारा निर्मित है), तो λ का मान है:

- (4) 3
- एक गतिमान बिन्दु की किसी समय t पर स्थिति 98. $x = a \cos \omega t$, $y = a \sin \omega t$ द्वारा दी गई है, तो समय t पर बिन्दु का त्वरण है:

- (1) $a\omega$ (2) $a\omega^2$ (3) $a \tan \omega t$ (4) $a^2\omega^2$
- $(D+3)^2 y = 5^x \log 2$ क<mark>ा विशेष</mark> समाकल है :

 - (1) $\frac{5^{x}}{3 + \log 5} \frac{\log 2}{9}$ (2) $\frac{5^{x}}{(3 + \log 5)^{2}} \frac{\log 2}{9}$
 - (3) $\frac{5^x}{(3-\log 5)^2} \frac{\log 2}{9}$
 - (4) $\frac{5^x}{(3-\log 5)^2} + \frac{\log 2}{9}$

- Coplanar forces equal to 7P, 8P and 5P 95. acting on a particle are in equilibrium, then the angle between 8P and 5P is:
 - (1) 30°
- (2) 45°
- (3) 60°
- (4) 120°
- A straight line cuts the line of action of 96. three concurrent forces OP, OQ, OR in A', B', C' respectively. If R is the resultant of P and Q,

$$\frac{P}{OA'}*\frac{Q}{OB'} = \frac{R}{OC'}$$
, then * is:

- (3) +
- The moment of a force about a point is 97. numerically = λ (the area of the triangle formed by the line representing the force and by joining the ends of this line to the point). Then λ is:
 - (1) 1
- $(3) \frac{1}{2}$
- (4) 3
- The position of a moving point at 98. time t is given by $x = a \cos \omega t$, $y = a \sin \omega t$, its acceleration at time t is:
 - (1) aw
- (2) a ω^2
- (3) a tan wt
- (4) $a^2 \omega^2$
- The particular integral of 99.

$$(D+3)^2$$
 y = $5^x - \log 2$, is:

(1)
$$\frac{5^x}{3 + \log 5} - \frac{\log 2}{9}$$

(1)
$$\frac{5^{x}}{3 + \log 5} - \frac{\log 2}{9}$$
(2)
$$\frac{5^{x}}{(3 + \log 5)^{2}} - \frac{\log 2}{9}$$

(3)
$$\frac{5^x}{(3-\log 5)^2} - \frac{\log 2}{9}$$

$$(4) \quad \frac{5^x}{(3-\log 5)^2} + \frac{\log 2}{9}$$

- 100. यदि AX = b, X ≥ 0 के सभी सुसंगत हलों का अवमुख समुच्चय एक अवमुख बहुभुज है, तो उसके चरण बिन्दुओं द्वारा ____ इष्टतम हल होता है; रिक्त स्थान को उचित चयन द्वारा भरें :
 - (1) कोई भी एक
 - (2) कम से कम कोई एक
 - (3) कम से कम दो
 - (4) कोई नहीं

101.

			Cj	-1	3	-2	0	0	0	
$C_{\rm B}$	В	$x_{\rm B}$	b	У1	У2	У3	y ₄	У5	У6	$x_{\rm B_i}/y_{\rm i_2}>0$
0	a_4	x_4	7	3	-1	3	1	0	0	-
0	a_5	x_5	12	-2	4	0	0	1	0	3
0	a ₆	x_6	10	-4	3	8	0	0	1	10/3
7	* =	0	z*-C;	1	-3	2	0	0	0	

किसी रेखीय प्रोग्रामन समस्या के लिए प्रथम सिम्पलैक्स सारिणी उपरोक्त द्वारा दर्शायी गई है; तो गलत कथन है:

- (1) अपगामी सदिश a₅ है ।
- (2) a, प्रवेशी सदिश है।
- (3) मुख्य अवयव 8 है।
- (4) संगत चर x_4, x_5, x_6 एक तत्समक मैट्रिक्स बनाते हैं।
- 102. यदि एक आधारी सुसंगत हल में (m+n-1) स्वतंत्र नियतन हों तथा स्वेच्छ संख्याएँ u_i (i=1, 2,, m) एवं v_j (j=1, 2,, n) सभी इस प्रकार हैं कि भिर कोष्टिका (r, s) के लिए $c_{rs} = u_r + v_s$, तो प्रत्येक खाली कोष्टिका (i, j) के संगत मूल्यांकन $\Delta_{ii} (\geq 0)$ बराबर है
 - (1) $C_{ij} + (u_i + v_j)$ (2) $C_{ij} + (u_i v_j)$
 - (3) $C_{ij} \frac{1}{2} (u_i + v_j) (4) C_{ij} (u_i + v_j)$
- 103. एक कण 30° के प्रक्षेप कोण से 196 मी/से के वेग से प्रक्षेपित किया जाता है, g का मान 9.8 मी/से² लेते हुए निम्न में से सत्य कथन ज्ञात करें:
 - (1) प्रारम्भिक क्षैतिज वेग = 98 मी/से
 - (2) अधिकतम प्राप्त ऊँचाई = 980 मी
 - (3) उड्ययन काल = 20 सेकण्ड
 - (4) प्रारम्भिक ऊर्ध्वाधर वेग = $98\sqrt{3} \, \text{मी/स}$

07 (Mathematics)

- 100. If the convex set of all the feasible solutions of AX = b, $X \ge 0$, is a convex polyhedron, then _____ extreme points give an optimal solution. Fill the gap correctly by :
 - (1) any of these
 - (2) at least one of the
 - (3) at least two of the
 - (4) none of these

101.

			Ci	-1	3	-2	0	0	0	
$C_{\rm B}$	В	$x_{\rm B}$	ь	У1	У2	У3	У4	У5	У6	$x_{\rm B_i}/y_{\rm i_2}>0$
0	a_4	x_4	7	3	-1	3	1	0	0	-
0			12	-2	4	0	0	1	0	3
0	a ₆	x6	10	-4	3	8	0	0	1	10/3
Z	* =	0	z*- C;	1	-3	2	0	0	0	

The initial simplex table for some L.P.P. is as above:

Now the false statement is:

- (1) the departing vector is a₅.
- (2) the entering vector is a₂.
- (3) the key element is 8.
- (4) the corresponding variables x_4 , x_5 , x_6 form an identity matrix.
- 102. If we have a basic feasible solution consisting of (m + n − 1) independent allocations and a set of arbitrary number u_i(i = 1, 2,, m) and v_j(j = 1, 2,, n) satisfying c_{rs} = u_r + v_s for all occupied cells(r, s), then the evalution Δ_{ij}(≥ 0) corresponding to each empty cell (i, j) is given by
 - (1) $C_{ij} + (u_i + v_j)$ (2) $C_{ij} + (u_i v_j)$
 - (3) $C_{ij} \frac{1}{2} (u_i + v_j) (4) C_{ij} (u_i + v_j)$
- 103. A particle is projected with a velocity of 196 m/s at an elevation of 30°, taking $g = 9.8 \text{ m/s}^2$, the true statement is:
 - (1) initial horizontal velocity = 98 m/s
 - (2) greatest height attained = 980 m
 - (3) time of flight = 20 s
 - (4) initial vertical velocity = $98\sqrt{3}$ m/s

- **104.** समीकरण $x^3 9x + 1 = 0$ का एक वास्तविक मूल निम्न में से किसके मध्य है ?

 - (1) 2 एवं 2.5 (2) 2.4 एवं 2.6

 - (3) 1 एवं 2.7 (4) 2.75 एवं 3
- 105. यदि $\frac{dy}{dx} = x y^2$ एवं y(0) = 1, तो y(0.1)का सही मान दो दशमलव स्थानों तक (लगभग) प्राप्त होगा:
 - (1) 0.85
- (2) 0.84
- (3) 0.91
- (4) 1.01
- **106.** पुनरावृत्ति सम्बन्ध $b_n = 2b_{n-1} + 1$ द्वारा परिभाषित अनुक्रम के लिए स्पष्ट सूत्र ज्ञात कीजिए, जबिक प्रारम्भिक प्रतिबन्ध b₁ = 7
 - (1) $b_n = 2^{n+1} + 3$ (2) $b_n = 2^{n+2} 1$

 - (3) $b_n = 3.2^n + 1$ (4) $b_n = 4.2^n n$
- 107. संख्यांक (numeric) फलन a_r = 4^{r + 3} के संगत $r \ge 0$ के लिए जनक फलन A(z) है :
 - (1) 64/(1-4z) (2) 32/(1-4z)
 - (3) 16/(1-4z)
- (4) 128/(1-4z)
- 108. निम्नलिखित में से कौन सा ब्लूम के शैक्षिक उद्देश्यों के वर्गीकरण में संज्ञानात्मक घटक के अन्तर्गत उच्चतम स्तरीय उद्देश्य है ?
 - (1) ज्ञान
- (2) अवबोध
- (3) मूल्यांकन
- 109. यदि $\Delta f(x) = 9x^2 + 11x + 5$ तो f(x) बराबर है:
 - (1) $3x^{(3)} + 10x^{(2)} + 5x^{(1)} + k$
 - (2) $3x^{(2)} 10x^{(1)} + k$
 - (3) $3x^{(3)} + 10x^{(2)} + 15x^{(1)} + k$
 - (4) $x^{(3)} x^{(2)} + x^{(1)} + k$

- 104. One real root of equation $x^3 9x + 1 = 0$ lies between
 - (1) 2 and 2.5
- (2) 2.4 and 2.6
- (3) 1 and 2.7
- (4) 2.75 and 3
- **105.** If $\frac{dy}{dx} = x y^2$ and y(0) = 1, then y(0.1)correct upto two decimal places (approx.) is:
 - (1) 0.85
- (2) 0.84
- (3) 0.91
- (4) 1.01
- 106. An explicit formula for the sequence defined by the recurrence relation $b_n = 2b_{n-1} + 1$, with the initial condition $b_1 = 7 \text{ is}$:
 - (1) $b_n = 2^{n+1} + 3$ (2) $b_n = 2^{n+2} 1$

 - (3) $b_n = 3.2^n + 1$ (4) $b_n = 4.2^n n$
- 107. For $r \ge 0$, the generating function A(z)corresponding to numeric function $a_{r} = 4^{r+3}$, is
 - (1) 64/(1-4z) (2) 32/(1-4z)

 - (3) 16/(1-4z) (4) 128/(1-4z)
- 108. Which of the following is the highest level objective under cognitive domain in Bloom Taxonomy of Educational Objectives?
 - (1) Knowledge
- (2) Understanding
- (3) Evaluation
- (4) Analysis
- **109.** If $\Delta f(x) = 9x^2 + 11x + 5$, then f(x)equals:
 - (1) $3x^{(3)} + 10x^{(2)} + 5x^{(1)} + k$
 - (2) $3x^{(2)} 10x^{(1)} + k$
 - (3) $3x^{(3)} + 10x^{(2)} + 15x^{(1)} + k$
 - (4) $x^{(3)} x^{(2)} + x^{(1)} + k$
 - 07 (Mathematics)

- 110. दृश्य-श्रव्य साधनों की सहायता से अनुभवों के आधार पर एक विशेष प्रकार का वर्गीकरण जिसे 'अनुभव का त्रिकोण' के रूप में जाना जाता है किसके द्वारा प्रस्तुत किया गया ?
 - (1) एडगर डेल
 - (2) एस्पिच एवं विलियम्स
 - (3) स्मिथ एवं मूरे
 - (4) सूसन मार्कल
- 111. पाठ योजना की हरबर्टीयन पंचपदीय उपागम का तीसरा सोपान/पद कौन सा है ?
 - (1) प्रस्तावना या तैयारी
 - (2) तुलना एवं साहचर्य
 - (3) प्रस्तुतीकरण
 - (4) सामान्यीकरण
- 112. निम्नलिखित में से कौन सा मोरिसन द्वारा प्रदत्त इकाई उपागम के सोपानों का सही तार्किक क्रम है ?
 - (1) अन्वेषण \rightarrow प्रस्तुतीकरण \rightarrow आत्मीकरण \rightarrow अभिव्यक्तिकरण \rightarrow संगठन
 - (2) प्रस्तुतीकरण \to अन्वेषण \to आत्मीकरण \to अभिव्यक्तिकरण \to संगठन
 - (3) प्रस्तुतीकरण → अन्वेषण → अभिव्यक्तिकरण → आत्मीकरण → संगठन
 - (4) अन्वेषण \to प्रस्तुतीकरण \to आत्मीकरण \to संगठन \to अभिव्यक्तिकरण
 - 113. 'मेथेटिक्स' अभिक्रमित अनुदेशन प्रणाली के प्रवर्तक कौन थे ?
 - (1) बी.एफ. स्कीनर (2) राबर्ट मैगर
 - (3) टी.एफ. गिलबर्ट (4) लारेन्स स्टोलुरो 07 (Mathematics)

- 110. Who provided specific type of classification with the help of Audio-Visual aids based on Experiences known as 'Cone of Experiences'.
 - (1) Edger Dale
 - (2) Espich and Williams
 - (3) Smith and Moore
 - (4) Susan Markle
- 111. Which is the third step of Herbitian five step approach of lesson plan?
 - (1) Introduction or Preparation
 - (2) Comparison and Association
 - (3) Presentation
 - (4) Generalization
- 112. Which of the following is the correct logical order of steps of Unit Approach given by Morrison's?
 - (1) Exploration → Presentation →
 Assimilation → Recitation →
 Organisation
 - (2) Presentation → Exploration →
 Assimilation → Recitation →
 Organisation
 - (3) Presentation → Exploration →
 Recitation → Assimilation →
 Organisation
 - (4) Exploration → Presentation →
 Assimilation → Organisation →
 Recitation

- 113. Who was the propounder of 'Mathetics' programmed instruction system?
 - (1) B.F. Skinner
 - (2) Robert Mager
 - (3) T.F. Gilbert
 - (4) Lawrence Stalurow

- 114. निम्नलिखित में से कौन सा शिक्षण सूत्र गणित शिक्षण की आगमन विधि से सम्बन्धित नहीं है ?
 - (1) विशिष्ट से सामान्य (2) मूर्त्त से अमूर्त्त
 - (3) नियम से उदाहरण (4) ज्ञात से अज्ञात
- 115. निम्नलिखित में से कौन सा कथन 'गणित की प्रकृति' के संबंध में असत्य है ?
 - (1) गणित की अपनी भाषा होती है जिसके माध्यम से पद, प्रत्यय, चिह्न, सूत्र, सिद्धान्तों का प्रतिपादन किया जाता है।
 - (2) गणित सार्वभौमिक विषय है।
 - (3) संख्याएँ, स्थान, मापन आदि गणित का आधार है इसमें वस्तुओं के सम्बन्ध तथा संख्यात्मक निष्कर्ष निकाले जाते हैं।
 - (4) गणित में सामान्यीकरण का क्षेत्र सीमित होता है।
- 116. निम्नलिखित में कौन सा कथन अवबोधात्मक स्तर के अनुदेशनात्मक परिणाम को अभिव्यक्त करता है?
 - (1) परिणामों की पृष्टि करते हैं।
 - (2) समान प्रकार के संप्रत्यय या वस्तुओं की तुलना करना ।
 - (3) तथ्यों को उनके गुणों के आधार पर वर्गीकरण करना)
 - (4) गणित की क्रियाओं को व्यवस्थित रूप से जमाना।
- 117. कौन सी शिक्षण विधि के अन्तर्गत शिक्षक द्वारा कक्षाकक्ष में अधिगम सामग्री प्रदान की जाती है और निर्देशित किया जाता है कि वे इसे विचार से पढ़कर महत्त्वपूर्ण बिन्दु निकालें, इसके पश्चात् शिक्षक की सहायता से सारांश प्राप्त करें ?
 - (1) प्रायोजना विधि
 - (2) समस्या समाधान विधि
 - (3) पर्यवेक्षित अध्ययन विधि
 - (4) अन्वेषण विधि

- 114. Which of the following Maxims is not related to Inductive Method of teaching Mathematics?
 - (1) Specific to General
 - (2) Concrete to Abstract
 - (3) Rules to Example
 - (4) Known to unknown
- 115. Which of the following statement is incorrect about Nature of Mathematics?
 - Mathematics has its own language from which term, concept, sign, formula's, principles are developed.
 - (2) Mathematics is Universal Subject.
 - (3) Numbers, places, measurements are the bases of Mathematics from which relationship between object and numerical conclusion have been made.
 - (4) In Mathematics scope of generalization is limited.
- 116. Which of the following statement expresses understanding level instructional outcome?
 - (1) Verification of the result.
 - (2) Comparing similar concept or things.
 - (3) Classify the facts on the basis of their traits.
 - (4) Arranging mathematical steps in a systematic manner.
- 117. In which teaching method, teacher provides learning material to students in class room, and instruct them to study throughly and get important points, then summarize it with the help of teacher?
 - (1) Projected Method
 - (2) Problem Solving Method
 - (3) Supervised Study Method
 - (4) Heuristic Method

- 118. निम्नलिखित में से कौन सा कथन गणित में निदानात्मक परीक्षण की उपयोगिता के सन्दर्भ में असत्य है ?
 - (1) यह जानना कि विद्यार्थी किस प्रकार की त्रुटियाँ करते हैं ?
 - (2) यह जानना कि इन त्रुटियों के कारण क्या है ?
 - (3) यह जानना कि क्या इन त्रुटियों का किन्हीं अन्य त्रुटियों से सम्बन्ध है।
 - (4) विद्यार्थियों की गणित में उपलब्धि को जानने के लिए।
- 119. गणित शिक्षण में 'विश्लेषण विधि' किस शिक्षण सूत्र पर आधारित होती है ?
 - (1) ज्ञात से अज्ञात
 - (2) अज्ञात से ज्ञात
 - (3) नियम से उदाहरण
 - (4) सामान्य से विशिष्ट
- 120. एक गणित अध्यापक ने अपने इकाई परीक्षण में एक प्रश्न बनाया कि:

sin(A + B) का मान है:

- (a) sin A sin B
- (b) sin A cos B
- (c) $\sin A \sin B + \cos A \cos B$
- (d) sin A cos B + cos A sin B निम्नांकित में से किस स्तर के अनुदेशनात्मक उद्देश्यों पर आधारित है ?
- (1) ज्ञान
- (2) अवबोध
- (3) अनुप्रयोग
- (4) कौशल
- 07 (Mathematics)

- 118. Which of the following statement is incorrect in context of use of diagnostic test in mathematics?
 - (1) To know what kind of errors student make.
 - (2) To know what are causes of errors.
 - (3) To know is there any relation of these errors with other errors.
 - (4) To know the achievement of students in mathematics.
- 119. 'Analytical Method' of Teaching of Mathematics is based on which maxims of teaching?
 - (1) known to unknown
 - (2) unknown to known
 - (3) Rule to example
 - (4) General to specific
- 120. A mathematics teacher prepares a question in his Unit Test that:

The value of sin(A + B) is equal to:

- (a) sin A sin B
- (b) sin A cos B
- (c) $\sin A \sin B + \cos A \cos B$
- (d) $\sin A \cos B + \cos A \sin B$

The above question prepared by teacher is based on instructional objective of which of the following level:

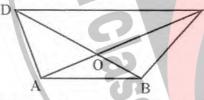
- (1) knowledge
- (2) understanding
- (3) application
- (4) skill

- 121. निम्नांकित में से किस अक्षमता के प्रकार में बच्चों को सिर्फ गणितीय कार्य में समस्या होती है ?

 - (1) गामक अक्षमता (2) डिस्कैल्कुलिया
 - (3) डिस्फेसिया
- (4) डिस्प्राफिया
- 122. निम्नलिखित में से कौन सा कथन गणित में मौखिक कार्य की विशेषता की दृष्टि से असत्य कथन है ?
 - (1) मौखिक गणित से विद्यार्थी तीव्र एवं शीघ्र अनुक्रिया प्रदान करने वाला बनता है।
 - (2) मौखिक गणित से समय की बचत होती है।
 - (3) मौखिक गणित से युक्तिपूर्ण तथा व्यवस्थित हल संभव नहीं हो पाते ।
 - (4) यह विद्यार्थी को आत्मविश्वास तथा धैर्य प्रदान करता है।
- 123. व्यावसायिक, उपभोक्ता कार्यों, सामाजिक, मनोरंजनात्मक एवं घरेल् कार्यों आवश्यकतानुसार गणित का प्रयोग करना कहलाता है
 - (1) व्यावहारिक गणित
 - (2) मनोरंजनात्मक गणित
 - (3) प्रकार्यात्मक गणित
 - (4) सामाजिक गणित

- 124. निम्नलिखित में से कौन सा कथन गणित में धीमी गति से सीखने वाले बच्चों की उपचारात्मक शिक्षण के सन्दर्भ में असत्य कथन है ?
 - (1) विद्यार्थियों की गणित की पाठ्यपुस्तक से बाहर की समस्याओं को हल करने के लिए प्रोत्साहित करना ।
 - (2) विद्यार्थियों को दैनिक जीवन के उदाहरणों की सहायता से समस्याओं को हल करने के लिए प्रोत्साहित करना ।
 - (3) शिक्षण के दौरान श्रव्य दृश्य सामग्री का प्रयोग करना ।
 - (4) सिर्फ मनोरंजक गतिविधियों की सहायता से उन्हें क्रियाशील बनाये रखना।

- 121. Which of the following is a type of disability in which a child faces problem only with mathematical tasks?
 - (1) Locomotor Disability
 - (2) Dyscalculia
 - (3) Dysphasia
 - (4) Dysgraphia
- 122. Which of the following statement is incorrect in context of characteristics of oral mathematics?
 - (1) Students become quick and early respondee with oral mathematics exposure.
 - (2) Oral mathematics saves time
 - (3) Getting logical and systematic solutions are not possible through oral mathematics.
 - (4) It gives confidence and patience in student.
- 123. The use of mathematics needed for vocational, consumer social, recreational & home making activities, is known as
 - (1) Vocational Mathematics
 - (2) Recreational Mathematics
 - (3) Functional Mathematics
 - (4) Social Mathematics
- 124. Which of the following statement is not correct in context of remedial teaching of Mathematics for slow learners?
 - (1) To encourage students to solve the problem outside the text book.
 - (2) To encourage students to solve the behavioural problems with examples of daily life.
 - (3) Use of audio-visual aids while teaching.
 - (4) Making them active only with entertaining activity.


07 (Mathematics)

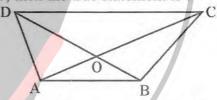
- 125. किसने कहा था कि 'प्रोजेक्ट एक सोद्देश्य प्रक्रिया है जिसे मन लगाकर सामाजिक वातावरण में पूरा किया जाता है "?
 - (1) स्टीवेन्सन
- (2) किलपेट्रिक
- (3) बेलार्ड
- (4) बर्टेण्ड रसेल
- 126. टेलर फ्रेम का प्रयोग निम्नांकित में से किस अक्षमता श्रेणी के बच्चों को गणित सिखाने के लिए किया जाता है ?
 - (1) दृष्टिबाधित बच्चों के लिए।
 - (2) श्रवणबाधित बच्चों के लिए।
 - (3) गामक अक्षमता बच्चों के लिए।
 - (4) मस्कुलर डिस्ट्रॉफी युक्त बच्चों के लिए।
- 127. निम्नलिखित में से कौन सा कथन गणित शिक्षण के 'कौशल' उद्देश्य से सम्बन्धित नहीं है ?
 - (1) ज्यामितीय आकृतियों को शीघ्रता एवं शुद्धता से बनाने के योग्य होना ।
 - (2) गणना को शीघ्रता एवं शुद्धता से करने योग्य होना ।
 - (3) तालिकाओं तथा लेखाचित्रों को शुद्धता से पढ़ने योग्य होना।
 - (4) गणितीय संकल्पनाओं की परिभाषा का अनुवाचन से योग्य होना ।
 - 128. गणित पाठ्यक्रम निर्माण के संदर्भ में निम्नलिखित में से कौन सा पाठ्यक्रम निर्माण का सिद्धान्त उपयुक्त नहीं है ?
 - (1) उच्च शिक्षा में उपयोगिता का सिद्धान्त
 - (2) बाल केंद्रियता का सिद्धांत
 - (3) क्रियाशीलता का सिद्धांत
 - (4) अध्यापक को केन्द्र मानने का सिद्धान्त

07 (Mathematics)

- **125.** Who stated that "A project is a whole-hearted purposeful activity proceeding in a Social Environment"?
 - (1) Stevenson
- (2) Kilpatrik
- (3) Ballard
- (4) Bertrand Russel
- 126. Taylor frame is used to teach Mathematics to which of the following category of children with disability?
 - (1) Children with Visual Impairment
 - (2) Children with Hearing Impairment
 - (3) Children with Locomotor Disability
 - (4) Children with Muscular Dystrophy
- 127. Which of the following statement is not related to 'Skill' objective of Mathematics Teaching?
 - (1) Able to draw Geometrical figures quickly & accurately.
 - (2) Able to calculate quickly and accurately.
 - (3) Able to read Tables and Graphs accurately.
 - (4) Able to recite definitions of Mathematical concepts.
 - 128. Which of the following principles of curriculum construction is not appropriate in context of Mathematics curriculum preparation?
 - (1) Principle of usefulness for higher education
 - (2) Principle of Child Centeredness
 - (3) Principle of Activity
 - (4) Principle of Teacher Centeredness

- 129. यदि a, b, c और d चार विभिन्न अभाज्य संख्याएँ है जहाँ 'a' सबसे छोटी अभाज्य संख्या है, तो abcd है
 - (1) एक अभाज्य संख्या
 - (2) एक विषम संख्या
 - (3) एक परिमेय संख्या
 - (4) एक सम संख्या
- 130. यदि किसी त्रिभुज की दो माध्यिकाएँ परस्पर लम्बवत् हैं एवं इन दोनों भुजाओं की लम्बाइयाँ a व b इकाई हैं, तो तीसरी भुजा की लम्बाई है:
 - (1) $\sqrt{\frac{2(a^2+b^2)}{5}}$
 - (2) $\sqrt{\frac{2(a^2+b^2)}{3}}$
 - (3) $\sqrt{\frac{a^2+b^2}{5}}$
 - $(4) \sqrt{\frac{a^2 + b^2}{ab}}$
- 131. दिए गए चित्र में भुजाएँ AB एवं CD समान्तर हैं, साथ ही माना त्रिभुज OAD का क्षेत्रफल α है एवं त्रिभुज OBC का क्षेत्रफल β है, तो सत्य कथन है

- (1) $\alpha = \beta$
- (2) $\alpha > \beta$
- (3) $\alpha < \beta$
- (4) इनमें से कोई नहीं
- 132. यदि x का मान अशून्य है, तो


$$\left(\frac{-8x^3}{27}\right)^{-1/3} - \left(\frac{8x^3}{27}\right)^{-1/3}$$
 बराबर है

- (1) (
- (2) $\frac{-3}{2x}$
- (3) $\frac{-3}{x}$
- (4) $\frac{3}{x}$

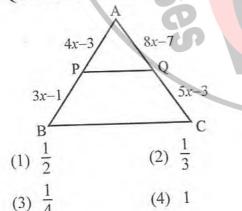
- 129. If a, b, c and d are four distinct prime numbers with 'a' as smallest prime number, then abcd is
 - (1) a prime number
 - (2) an odd number
 - (3) a rational number
 - (4) an even number
- 130. If the medians of two sides of a triangle meet at right angles, the lengths of these two sides are of a and b units. The length of third side of triangle is

(1)
$$\sqrt{\frac{2(a^2+b^2)}{5}}$$

- (2) $\sqrt{\frac{2(a^2+b^2)}{3}}$
- (3) $\sqrt{\frac{a^2 + b^2}{5}}$
- $(4) \quad \sqrt{\frac{a^2 + b^2}{ab}}$
- 131. In the given figure, the sides AB and CD are parallel. Let the area of triangle OAD be α and area of triangle OBC be β, then the true statement is:

- (1) $\alpha = \beta$
- (2) $\alpha > \beta$
- (3) $\alpha < \beta$
- (4) None of these
- 132. If x is not equal to zero, then

$$\left(\frac{-8x^3}{27}\right)^{-1/3} - \left(\frac{8x^3}{27}\right)^{-1/3}$$
 is equal to

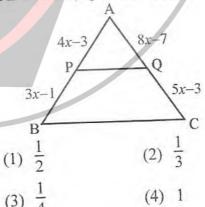

- (1) 0
- (2) $\frac{-3}{2x}$
- (3) $\frac{-3}{x}$
- (4) $\frac{3}{x}$

133. निम्न समीकरण निकाय का हल है :

$$\frac{x}{a} = \frac{y}{b}$$
, $ax + by = a^2 + b^2$

- (1) -a, -b (2) a, b

- (3) ab, ab (4) $\frac{b^2}{a}, \frac{a^2}{b}$
- **134.** माना समीकरण $3x^3 10x^2 + x + 6 = 0$ के मूल α , β , γ हैं, एवं $\alpha\beta - \alpha - 2 = 0$, तो γ है
 - (1) 2/3
- (2) -2/3
- (3) 3/2
- (4) -3/2
- 135. यदि $(2+\sqrt{3})$ समीकरण $x^4 + 2x^3 - 16x^2 - 22x + 7 = 0$ का एक मूल है, तो एक अन्य मूल है
 - (1) $-3 \sqrt{2}$ (2) $\sqrt{3} \sqrt{2}$ (3) $\sqrt{3} + \sqrt{2}$ (4) $3 + \sqrt{2}$
- 136. माना समीकरण $x^3 7x^2 + 36 = 0$ के मूल $\alpha, \beta, \gamma \stackrel{?}{\epsilon}$, $\nabla \stackrel{?}{a} \beta - \alpha = 5 \stackrel{?}{\epsilon}$, $\nabla \stackrel{?}{a} \alpha = 1 \stackrel{?}{\alpha} \beta = 1 \stackrel{?}{\alpha}$
- 137. $(1 + x)^{15}$ के प्रसार में $(r 1)^{th}$ पद एवं (2r + 3)th पद के गुणांक बराबर हैं, तो r बराबर है:
 - (1) 3
- (3) 4
- 138. दिए गए चित्र में PQ एवं BC समान्तर हैं, एवं AP = 4x - 3, AQ = 8x - 7, PB = 3x - 1, OC = 5x - 3 तो x बराबर :


07 (Mathematics)

133. The solution of the following system of equations is

$$\frac{x}{a} = \frac{y}{b}$$
, $ax + by = a^2 + b^2$

- (1) -a, -b (2) a, b(3) ab, ab (4) $\frac{b^2}{a}, \frac{a^2}{b}$
- 134. Let α , β , γ be the roots of $3x^3 - 10x^2 + x + 6 = 0$, if $\alpha\beta - \alpha - 2 = 0$, then y is
 - (1) 2/3
- (2) -2/3
- (3) 3/2
- (4) -3/2
- 135. If $(2+\sqrt{3})$ is one root of $x^4 + 2x^3 - 16x^2 - 22x + 7 = 0$, then one of the other root is
- (1) $-3 \sqrt{2}$ (2) $\sqrt{3} \sqrt{2}$ (3) $\sqrt{3} + \sqrt{2}$ (4) $3 + \sqrt{2}$
- 136. Let α , β , γ be the roots of $x^3 7x^2 + 36 = 0$, and if $\beta - \alpha = 5$, then γ is (1) -1/6 (2) 1/6
- (3) 6
- (4) -6
- 137. In the expansion of $(1 + x)^{15}$, the coefficients of $(r-1)^{th}$ term and (2r + 3)th term are equal, then r equals:
 - (1) 3
- (2) 6
- (3) 4
- (4) 5

138. In the given figure, PQ is parallel to BC, and lengths AP = 4x - 3, AQ = 8x - 7, PB = 3x - 1, QC = 5x - 3, then x equals:

- **139.** a = 2/3 के लिए $(1+x)^9$ के प्रसार में सबसे महत्तम पद होगा :

 - (1) T_3 (2) T_4
 - $(3) T_6$
- $(4) T_7$
- **140.** $(1-x)^{-3}$, |x| < 1, के प्रसार में, यदि rवें पद का गुणांक $^{\lambda+2}C_2$ हो तो r बराबर है
 - (1) λ
- (2) $\lambda + 1$
- (3) $\lambda 1$
- (4) $\lambda + 2$
- 141. यदि n एक धनात्मक पूर्णांक हो तो $n(n^2 - 1) (3n + 2)$ निम्न में से किससे विभाजित होगा ?
 - (1) 18
- (2) 48
- (3) 24
- (4) 16
- **142.** $ax \in \mathbb{R}$ हो, तो $\frac{x^2 2x + 9}{x^2 + 2x + 9}$ की न्यूनतम एवं अधिकतम मान की सीमाएँ हैं:
 - (1)/1/4, 2
- (2) 1, 2
- (3) 1/2, 2
- (4) 3/2, 2
- 143. समीकरण $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ के मूल बराबर परन्त विपरीत चिह्न के हैं, तो :
 - (1) $r = \frac{pq}{p+q}$ (2) $r = \frac{p+q}{2}$
 - (3) $r = \frac{p+q}{pq}$ (4) $r = \frac{p-q}{2}$
- 144. यदि $a^2 + b^2 + c^2 > bc + ca + ab$ सत्य हैं जब a, b, c के मान होंगे :
 - (1) केवल धनात्मक वास्तविक संख्याएँ
 - (2) केवल पूर्णांक संख्याएँ
 - (3) केवल परिमेय संख्याएँ
 - (4) सभी अशून्य वास्तविक संख्याएँ
- 145. $(1+x+x^2+x^3)^{11}$ के प्रसार में x^4 का गुणांक
 - (1) 990
- (2) 1000
- (3) 980
- (4) 890

- 139. If x = 2/3, then greatest term in the expansion of $(1+x)^9$ will be

 - (1) T_3 (2) T_4
 - $(3) T_6$
- (4) T₇
- **140.** In the expansion of $(1-x)^{-3}$, |x| < 1, if the coefficient of rth term is $^{\lambda + 2}C_2$, then r equals
 - $(1) \lambda$
- (3) $\lambda 1$
- 141. If n is a positive integers, then $n(n^2-1)(3n+2)$ is divisible by
 - (1) 18
- (2) 48
- (3) 24
- (4) 16
- 142. If $x \in \mathbb{R}$, then minimum and maximum limit of $\frac{x^2 - 2x + 9}{x^2 + 2x + 9}$ are
- (1) 1/4, 2 (3) 1/2, 2
- (2) 1, 2 (4) 3/2, 2
- 143. The roots of equation $\frac{1}{x+p} + \frac{1}{x+q} = \frac{1}{r}$ are equal and opposite in sign, then
 - (1) $r = \frac{pq}{p+q}$ (2) $r = \frac{p+q}{2}$
 - (3) $r = \frac{p+q}{pq}$ (4) $r = \frac{p-q}{2}$
- 144. If $a^2 + b^2 + c^2 > bc + ca + ab$ is true, then values of a, b, c are
 - (1) positive real numbers only
 - (2) whole numbers only
 - (3) rational numbers only
 - (4) all non-zero real numbers
- 145. The coefficient of x^4 in the expansion of $(1 + x + x^2 + x^3)^{11}$ is
 - (1) 990
- (2) 1000
- (3) 980
- (4) 890

30

146. $S_1, S_2, ... S_n$ उन n गुणोत्तर श्रेणियों के योग हैं, जिनके प्रथम पद क्रमशः 1, 2, 3, ..., n हैं एवं सार्व अनुपात क्रमशः

$$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ..., \frac{1}{n+1}, \frac{1}{8},$$
 तो $(S_1 + S_2 + S_3 + ... + S_n)$ बराबर है

- (1) $\frac{1}{2}$ n(n+2) (2) $\frac{1}{3}$ n(n+2)
- (3) $\frac{1}{2}$ n(n+3) (4) $\frac{1}{3}$ n(n+3)
- 147. यदि 1 एवं r के मध्य n हरात्मक माध्य प्रविष्ट किये जाए, तो प्रथम माध्य नवाँ माध्य = ?
 - (1) $\frac{n+r}{nr-1}$ (2) $\frac{2n+r}{nr-1}$ (3) $\frac{n+r}{nr+r}$ (4) $\frac{n+r}{nr+1}$
- 148. यदि ${}^{n}C_{10} = {}^{n}C_{15}$, तो ${}^{27}C_{n}$ बराबर है
 - (1) 702

- (2) 351 (4) 243
- 149. शब्द GANESHPURI के अक्षरों से विभिन्न शब्द बनाये गये, तो सत्य कथन है :
 - (1) यदि सभी स्वरों को एक साथ लिया जाए तो शब्दों की संख्या (7!) (4!) होगी,
 - (2) अक्षर E, H, P कभी साथ न रहें तो शब्दों की संख्या = $\frac{(10!)}{3}$
 - (3) यदि G सदैव प्रथम स्थान पर रहे तो शब्दों की संख्या = (10!)
 - (4) यदि सभी अक्षरों को एक साथ लिया जाए तो शब्दों की संख्या = (9!)
 - 150. किसी समान्तर श्रेणी का सार्व अन्तर ते है एवं यदि श्रेणी $a_1, a_2, a_3, \dots, है तो$

$$a_1^2 - a_2^2 + a_3^2 - a_4^2 + \dots - a_{2k}^2 = ?$$

- (1) $-kd(a_1 + a_{2k})$ (2) $kd(a_1 + a_{2k})$
- (3) $-kd(a_1 a_{2k})$ (4) $kd(a_1 a_{2k})$
- 07 (Mathematics)

146. If $S_1, S_2, \dots S_n$ are the sums of n infinite geometrical series whose first terms are 1, 2, 3, ..., n and common ratios are

$$\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots, \frac{1}{n+1}$$
, then

$$(S_1 + S_2 + S_3 + \dots + S_n) = ?$$

- (1) $\frac{1}{2}$ n(n+2) (2) $\frac{1}{3}$ n(n+2)

- (3) $\frac{1}{2}$ n(n+3) (4) $\frac{1}{3}$ n(n+3)
- 147. If n harmonic means are inserted between 1 and r, then $\frac{1^{st} \text{ mean}}{n^{th} \text{ mean}} = ?$
 - (1) $\frac{n+r}{nr-1}$ (2) $\frac{2n+r}{nr-1}$ (3) $\frac{n+r}{nr+r}$ (4) $\frac{n+r}{nr+1}$
- 148. If ${}^{n}C_{10} = {}^{n}C_{15}$, then ${}^{27}C_{n}$ equals
 - (1) 702
- (3) 729
- (4) 243
- 149. Words are framed from the letters of the word GANESHPURI as follows, then the true statement is
 - (1) if all vowels are always together, then (7!) (4!) words
 - (2) letters E, H, P are never together, then $\frac{(10!)}{3}$ words
 - (3) the letter G always occupies the first place, then (10!) words
 - (4) all the letters are taken together, then (9!) words
 - 150. For an arithmetical progression

$$a_1, a_2, a_3, \dots,$$

 $a_1^2 - a_2^2 + a_3^2 - a_4^2 + \dots - a_{2k}^2 = ?,$

d being the common difference:

- (1) $-kd(a_1 + a_{2k})$ (2) $kd(a_1 + a_{2k})$
- (3) $-kd(a_1 a_{2k})$ (4) $kd(a_1 a_{2k})$

07 (Mathematics)